Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 223: 1-10, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642435

RESUMO

Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 µM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 µM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.


Assuntos
Antioxidantes , Apoptose , Ácido Glutâmico , Resposta ao Choque Térmico , Proteínas Proto-Oncogênicas c-akt , Células de Sertoli , Transdução de Sinais , Animais , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Antioxidantes/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos , Tiorredoxinas/metabolismo , Células Cultivadas
2.
Theriogenology ; 215: 281-289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103405

RESUMO

Heat stress leads to the accumulation of lipid peroxides in Sertoli cells. Unrestricted lipid peroxidation of catalyzed polyunsaturated fatty acids by Cytochrome P450 (CYP) drive the ferroptosis. However, little is known about the role of CYP cyclooxygenase in heat stress-induced ferroptosis in Sertoli cells. In this study, we investigated the relationship between CYP cyclooxygenase and heat stress-induced ferroptosis in porcine Sertoli cells, as well as whether Ras-JNK signaling is involved in the process. The results showed that heat stress significantly increased the expression of cytochrome P450 cyclooxygenase 2C9 (CYP2C9) and the content of epoxyeicosatrienoic acids (EETs), although there are no significant effect on the expression of cytochrome P450 cyclooxygenase 2J2 (CYP2J2) and cytochrome P450 cyclooxygenase 2C8 (CYP2C8). In addition, heat stress reduced the cell viability, the protein expression level of glutathione peroxidase 4 (GPX4) and Ferritin (all P < 0.01) while increased the level of intracellular reactive oxygen species (ROS) and the protein level of Transferrin receptor 1(TFR1) (both P < 0.01), as well as activating the Ras-JNK signaling pathway. Ferrostatin-1, a ferroptosis-specific inhibitor, reduced ROS levels and the protein level of TFR1 (both P < 0.01), but elevated the cell viability, the protein level of GPX4, and Ferritin (all P < 0.01). Sulfaphenazole, a specific inhibitor of CYP2C9 or two small interfering RNAs targaring CYP2C9 enhanced the cell viability (all P < 0.01), while reduced the content of EETs (all P < 0.01) and inhibited the Ras-JNK signaling and ferroptosis under heat stress. Salirasib, a specific inhibitor of Ras, significantly elevated the cell viability, whereas reduced the level of intracellular ROS and inhibited the phosphorylation of JNK, and alleviated heat stress-induced ferroptosis in porcine Sertoli cells. Notably, there is no effect on the expression of CYP2C9 and the content of EETs. These results indicate that heat stress can induce ferroptosis in Sertoli cells by increasing the expression of CYP2C9 and the content of EETs, which in true activates the Ras-JNK signaling pathway, but there is no feedback from Ras-JNK signaling to the expression of CYP2C9. Our study finds a novel heat stress-induced cell death model of Sertoli cells as well as providing the therapeutic potential for anti-ferroptosis.


Assuntos
Ferroptose , Células de Sertoli , Masculino , Animais , Suínos , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ciclo-Oxigenase 2/metabolismo , Resposta ao Choque Térmico , Ferritinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...