Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38821784

RESUMO

Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-ß signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.

2.
Sci Rep ; 14(1): 9511, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664449

RESUMO

It is important to study the bacteria that cause endometritis to identify effective therapeutic drugs for dairy cows. In this study, 20% oxytetracycline was used to treat Holstein cows (n = 6) with severe endometritis. Additional 10 Holstein cows (5 for healthy cows, 5 for cows with mild endometritis) were also selected. At the same time, changes in bacterial communities were monitored by high-throughput sequencing. The results show that Escherichia coli, Staphylococcus aureus and other common pathogenic bacteria could be detected by traditional methods in cows both with and without endometritis. However, 16S sequencing results show that changes in the abundance of these bacteria were not significant. Endometritis is often caused by mixed infections in the uterus. Oxytetracycline did not completely remove existing bacteria. However, oxytetracycline could effectively inhibit endometritis and had a significant inhibitory effect on the genera Bacteroides, Trueperella, Peptoniphilus, Parvimonas, Porphyromonas, and Fusobacterium but had no significant inhibitory effect on the bacterial genera Marinospirillum, Erysipelothrix, and Enteractinococcus. During oxytetracycline treatment, the cell motility, endocrine system, exogenous system, glycan biosynthesis and metabolism, lipid metabolism, metabolism of terpenoids, polyketides, cofactors and vitamins, signal transduction, and transport and catabolism pathways were affected.


Assuntos
Antibacterianos , Endometrite , Oxitetraciclina , Útero , Oxitetraciclina/farmacologia , Oxitetraciclina/uso terapêutico , Animais , Feminino , Bovinos , Endometrite/microbiologia , Endometrite/veterinária , Endometrite/tratamento farmacológico , Útero/microbiologia , Útero/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/tratamento farmacológico , RNA Ribossômico 16S/genética , Microbiota/efeitos dos fármacos
3.
Mol Neurobiol ; 61(3): 1655-1672, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37751044

RESUMO

In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.


Assuntos
Depressão , Perimenopausa , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Cromatografia Líquida , Serotonina/metabolismo , Espectrometria de Massas em Tandem , Encéfalo , Hipocampo/metabolismo , Modelos Animais de Doenças
4.
Vet Med Sci ; 9(1): 326-335, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446749

RESUMO

BACKGROUND: T-box transcription factor 2 (TBX2) is a member of T-box gene family whose members are highly conserved in evolution and encoding genes and are involved in the regulation of developmental processes. The encoding genes play an important role in growth and development. Although TBX2 has been widely studied in cancer cell growth and development, its biological functions in bovine cumulus cells remain unclear. OBJECTIVES: This study aimed to investigate the regulatory effects of TBX2 in bovine cumulus cells. METHODS: TBX2 gene was knockdown with siRNA to clarify the function in cellular physiological processes. Cell proliferation and cycle changes were determined by xCELLigence cell function analyzer and flow cytometry. Mitochondrial membrane potential and autophagy were detected by fluorescent dye staining and immunofluorescence techniques. Western blot and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to detect the expression changes of proliferation and autophagy-related proteins. Aadenosine triphosphate (ATP) production, glucose metabolism, and cholesterol synthesis of cumulus cells were measured by optical density and chemiluminescence analysis. RESULTS: After inhibition of TBX2, the cell cycle was disrupted. The levels of apoptosis, ratio of light chain 3 beta II/I, and reactive oxygen species were increased. The proliferation, expansion ability, ATP production, and the amount of cholesterol secreted by cumulus cells were significantly decreased. CONCLUSIONS: TBX2 plays important roles in regulating the cells' proliferation, expansion, apoptosis, and autophagy; maintaining the mitochondrial function and cholesterol generation of bovine cumulus cells.


Assuntos
Autofagia , Células do Cúmulo , Feminino , Animais , Bovinos , Células do Cúmulo/metabolismo , Proliferação de Células , Apoptose/genética , Mitocôndrias , Colesterol/metabolismo , Colesterol/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...