Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 30(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39027995

RESUMO

Following the publication of the above article, the authors realized that, in Fig. 1D on p. 7363, the data panel selected for the '0.5 mM Succinate' group was duplicated in Fig. 1B (Control) in another article of theirs published in FASEB J ("α­Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway": doi: 10.1096/fj.201700670R) due to the fact that they had inadvertently confused the layout of the two figures. The authors apologize for this error. Secondly, in terms of the quantification of the blots shown in Fig. 2A, ß­actin was not in fact used as a loading control; the phosphoproteins were normalized against the levels of the relative total protein, and the layout of Fig. 2A has been revised to reflect this (note that the the figure legend for Fig. 2 has also been revised: The last sentence no longer reads, "ß­actin was used as a loading control."). The revised versions of Figs. 1 and 2 are shown on the next page. Note that these errors did not affect the results or the main conclusions reported in the study, and no corrections were required either to the descriptions in the text or to the histograms shown in these figures. All the authors approve of the publication of this corrigendum, and the authors are grateful to the Editor of Molecular Medicine Reports for allowing them the opportunity to publish this. The authors regret their oversight in allowing these errors to be included in the paper, and apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 16: 7361­7366, 2017; DOI: 10.3892/mmr.2017.7554].

4.
Sci Rep ; 10(1): 18721, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116217

RESUMO

Editor's Note: this Article has been retracted; the Retraction Note is available at https://www.nature.com/articles/s41598-020-72330-x.

6.
EMBO J ; 39(7): e103304, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32104923

RESUMO

Beneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here, we identified a myometabolite-mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercise in mice. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α-ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysis in vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2-oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss-of-function and gain-of-function mouse models, we showed that OXGR1 is essential for AKG-mediated exercise-induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.


Assuntos
Ácidos Cetoglutáricos/sangue , Atrofia Muscular/genética , Receptores Purinérgicos P2/genética , Treinamento Resistido/métodos , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Atrofia Muscular/metabolismo , Receptores Purinérgicos P2/metabolismo
7.
EMBO Rep ; 20(9): e47892, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31318145

RESUMO

The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain IIb expression. Further, by using pharmacological or genetic loss-of-function models generated by phospholipase Cß antagonists, SUNCR1 global knockout, or SUNCR1 gastrocnemius-specific knockdown, we found that the effects of succinate on skeletal muscle fiber-type remodeling are mediated by SUNCR1 and its downstream calcium/NFAT signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via SUNCR1 signaling pathway. These findings suggest the potential beneficial use of succinate-based compounds in both athletic and sedentary populations.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ácido Succínico/farmacologia , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
FASEB J ; 32(1): 488-499, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939592

RESUMO

Skeletal muscle atrophy due to excessive protein degradation is the main cause for muscle dysfunction, fatigue, and weakening of athletic ability. Endurance exercise is effective to attenuate muscle atrophy, but the underlying mechanism has not been fully investigated. α-Ketoglutarate (AKG) is a key intermediate of tricarboxylic acid cycle, which is generated during endurance exercise. Here, we demonstrated that AKG effectively attenuated corticosterone-induced protein degradation and rescued the muscle atrophy and dysfunction in a Duchenne muscular dystrophy mouse model. Interestingly, AKG also inhibited the expression of proline hydroxylase 3 (PHD3), one of the important oxidoreductases expressed under hypoxic conditions. Subsequently, we identified the ß2 adrenergic receptor (ADRB2) as a downstream target for PHD3. We found AKG inhibited PHD3/ADRB2 interaction and therefore increased the stability of ADRB2. In addition, combining pharmacologic and genetic approaches, we showed that AKG rescues skeletal muscle atrophy and protein degradation through a PHD3/ADRB2 mediated mechanism. Taken together, these data reveal a mechanism for inhibitory effects of AKG on muscle atrophy and protein degradation. These findings not only provide a molecular basis for the potential use of exercise-generated metabolite AKG in muscle atrophy treatment, but also identify PHD3 as a potential target for the development of therapies for muscle wasting.-Cai, X., Yuan, Y., Liao, Z., Xing, K., Zhu, C., Xu, Y., Yu, L., Wang, L., Wang, S., Zhu, X., Gao, P., Zhang, Y., Jiang, Q., Xu, P., Shu, G. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway.


Assuntos
Ácidos Cetoglutáricos/uso terapêutico , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Corticosterona/farmacologia , Modelos Animais de Doenças , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos
9.
Metabolism ; 79: 10-23, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080813

RESUMO

OBJECTIVE: Growth hormone stimulates growth by increasing insulin-like growth factor 1 expression and secretion. In the presence of insufficient nutrients, GH increases, whereas IGF-1 expression becomes severely suppressed, leading to GH resistance. This study aimed to explore the effect of arginine (Arg) on GH resistance during malnutrition and to describe its underlying mechanism. METHODS: C57BL/6J mice were injected intraperitoneally with Arg for 1h or subjected to caloric restriction with Arg supplement in drinking water for 18days. HepG2 cells were exposed to different Arg concentrations for 24h. Signaling pathway agonists/inhibitors, siRNA, and overexpression plasmids were used to investigate the underlying molecular mechanism. Liver-specific toll-like receptor (TLR4) knockout mice were utilized to clarify the role of TLR4 in Arg-induced IGF-I expression and secretion. RESULTS: Arg inhibited the TLR4 downstream pathway by binding to TLR4 and consequently activated Janus kinase 2/signal transducer and activator of transcription 5 signaling pathway. As a result, IGF-1 transcription and secretion increased. Arg activity was absent in liver-specific TLR4 knockout mice and was greatly suppressed in liver with overexpressed TLR4, suggesting that hepatic TLR4 was required and sufficient to induce GH resistance. By contrast, the mammalian target of rapamycin pathway was unnecessary for Arg activity. Arg not only significantly increased IGF-1 expression and secretion under acute fasting and chronic CR conditions but also attenuated body weight loss. CONCLUSIONS: Our results demonstrate a previously unappreciated pathway involving Arg that reverses GH resistance and alleviates malnutrition-induced growth restriction through the inhibition of TLR4-mediated inflammatory pathway.


Assuntos
Arginina/farmacologia , Hormônio do Crescimento/metabolismo , Inflamação/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , Masculino , Desnutrição/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT5/biossíntese , Fator de Transcrição STAT5/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética
10.
Cell Rep ; 20(10): 2455-2467, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877477

RESUMO

Although the widely used anticoagulant drug heparin has been shown to have many other biological functions independent of its anticoagulant role, its effects on energy homeostasis are unknown. Here, we demonstrate that heparin level is negatively associated with nutritional states and that heparin treatment increases food intake and body weight gain. By using electrophysiological, pharmacological, molecular biological, and chemogenetic approaches, we provide evidence that heparin increases food intake by stimulating AgRP neurons and increasing AgRP release. Our results support a model whereby heparin competes with insulin for insulin receptor binding on AgRP neurons, and by doing so it inhibits FoxO1 activity to promote AgRP release and feeding. Heparin may be a potential drug target for food intake regulation and body weight control.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Heparina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptor de Insulina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Eletrofisiologia , Proteína Forkhead Box O1/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Mol Med Rep ; 16(5): 7361-7366, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28944867

RESUMO

It is well known that endurance training is effective to attenuate skeletal muscle atrophy. Succinate is a typical TCA metabolite, of which exercise could dramatically increase the content. The present study aimed to investigate the effect of succinate on protein synthesis in skeletal muscle, and try to delineate the underlying mechanism. The in vitro study revealed that succinate dose­dependently increased protein synthesis in C2C12 myotube along with the enhancement of phosphorylation levels of AKT Serine/Threonine Kinase 1(Akt), mammalian target of rapamycin, S6, eukaryotic translation initiation factor 4E, 4E binding protein 1 and forkhead box O (FoxO) 3a. Furthermore, it was demonstrated that 20 mM succinate markedly increased [Ca2+]i. Then, the phospho­extracellular regulated kinase (Erk), ­Akt level and the crosstalk between Erk and Akt were elevated in response to succinate. Notably, the Erk antagonist (U0126) or mTOR inhibitor (rapamycin) abolished the effect of succinate on protein synthesis. The in vivo study verified that succinate dose­dependently increased the protein synthesis, in addition to phosphorylation levels of Erk, Akt and FoxO3a in gastrocnemius muscle. In summary, these findings demonstrated that succinate promoted skeletal muscle protein deposition via Erk/Akt signaling pathway.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ácido Succínico/farmacologia , Animais , Butadienos/farmacologia , Cálcio/análise , Linhagem Celular , Fatores de Transcrição Forkhead/metabolismo , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
12.
Sci Rep ; 6: 26802, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225984

RESUMO

Skeletal muscle weight loss is accompanied by small fiber size and low protein content. Alpha-ketoglutarate (AKG) participates in protein and nitrogen metabolism. The effect of AKG on skeletal muscle hypertrophy has not yet been tested, and its underlying mechanism is yet to be determined. In this study, we demonstrated that AKG (2%) increased the gastrocnemius muscle weight and fiber diameter in mice. Our in vitro study also confirmed that AKG dose increased protein synthesis in C2C12 myotubes, which could be effectively blocked by the antagonists of Akt and mTOR. The effects of AKG on skeletal muscle protein synthesis were independent of glutamate, its metabolite. We tested the expression of GPR91 and GPR99. The result demonstrated that C2C12 cells expressed GPR91, which could be upregulated by AKG. GPR91 knockdown abolished the effect of AKG on protein synthesis but failed to inhibit protein degradation. These findings demonstrated that AKG promoted skeletal muscle hypertrophy via Akt/mTOR signaling pathway. In addition, GPR91 might be partially attributed to AKG-induced skeletal muscle protein synthesis.


Assuntos
Ácidos Cetoglutáricos/farmacologia , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Ácidos Cetoglutáricos/toxicidade , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P2/biossíntese , Receptores Purinérgicos P2/genética
13.
J Agric Food Chem ; 64(8): 1720-9, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26855124

RESUMO

Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 µM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/ß, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , Transdução de Sinais , Ácido Tióctico/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Camundongos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Receptor 2 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...