Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 357: 100-107, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35963591

RESUMO

Caspases are a family of evolutionary conserved cysteine proteases that play key roles in programmed cell death and inflammation. Among the methods for the detection of caspase activity, biosensors based on luciferases have advantages in genetical encoding and convenience in assay. In this study, we constructed a new set of caspase biosensors based on NanoLuc luciferase. This kind of sensors, named NanoLock, work in dark-to-bright model, with the help of a NanoLuc quencher peptide (HiBiT-R/D) mutated from HiBiT. Optimized NanoLock responded to proteases with high signal to noise ratio (S/N), 1233-fold activation by tobacco etch virus protease in HEK293 cells and > 500-fold induction to caspase 3 in vitro. We constructed NanoLocks for the detection of caspase 1, 3, 6, 7, 8, 9, and 10, and assays in HEK293 cells demonstrated that these sensors performed better than commercial kits in the aspect of S/N and convenience. We further established a cell line stably expressing NanoLock-casp 6 and provided a proof-of-concept for the usage of this cell line in the high throughput screening of caspase 6 modulator.


Assuntos
Apoptose , Caspases , Caspase 3 , Caspases/genética , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo
2.
Biosens Bioelectron ; 209: 114226, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413624

RESUMO

Protein sensors based on allosteric enzymes responding to target binding with rapid changes in enzymatic activity are potential tools for homogeneous assays. However, a high signal-to-noise ratio (S/N) is difficult to achieve in their construction. A high S/N is critical to discriminate signals from the background, a phenomenon that might largely vary among serum samples from different individuals. Herein, based on the modularized luciferase NanoLuc, we designed a novel biosensor called NanoSwitch. This sensor allows direct detection of antibodies in 1 µl serum in 45 min without washing steps. In the detection of Flag and HA antibodies, NanoSwitches respond to antibodies with S/N ratios of 33-fold and 42-fold, respectively. Further, we constructed a NanoSwitch for detecting SARS-CoV-2-specific antibodies, which showed over 200-fold S/N in serum samples. High S/N was achieved by a new working model, combining the turn-off of the sensor with human serum albumin and turn-on with a specific antibody. Also, we constructed NanoSwitches for detecting antibodies against the core protein of hepatitis C virus (HCV) and gp41 of the human immunodeficiency virus (HIV). Interestingly, these sensors demonstrated a high S/N and good performance in the assays of clinical samples; this was partly attributed to the combination of off-and-on models. In summary, we provide a novel type of protein sensor and a working model that potentially guides new sensor design with better performance.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Luciferases , SARS-CoV-2
3.
Clin Sci (Lond) ; 135(12): 1505-1522, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34128977

RESUMO

Chronic hepatitis B virus (HBV) infection is a significant public health burden worldwide. HBV covalently closed circular DNA (cccDNA) organized as a minichromosome in nucleus is responsible for viral persistence and is the key obstacle for a cure of chronic hepatitis B (CHB). Recent studies suggest cccDNA transcription is epigenetically regulated by histone modifications, especially histone acetylation and methylation. In the present study, we identified transcriptionally active histone succinylation (H3K122succ) as a new histone modification on cccDNA minichromosome by using cccDNA ChIP-Seq approach. Silent mating type information regulation 2 homolog 7 (SIRT7), as an NAD+-dependent histone desuccinylase, could bind to cccDNA through interaction with HBV core protein where it catalyzed histone 3 lysine 122 (H3K122) desuccinylation. Moreover, SIRT7 acts cooperatively with histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) and SET domain containing 2 (SETD2) to induce silencing of HBV transcription through modulation of chromatin structure. Our data improved the understanding of histone modifications of the cccDNA minichromosome, thus transcriptional silencing of cccDNA may represent a novel antiviral strategy for the prevention or treatment of HBV infection.


Assuntos
Catálise , DNA Circular/metabolismo , Histona Metiltransferases/genética , Histonas/metabolismo , Sirtuínas/metabolismo , DNA Viral/genética , Hepatite B/prevenção & controle , Hepatite B/terapia , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/prevenção & controle , Humanos , Sirtuínas/genética , Transcrição Gênica/genética , Replicação Viral/genética
4.
Cell Discov ; 7(1): 18, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767156

RESUMO

It is important to evaluate the durability of the protective immune response elicited by primary infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we systematically evaluated the SARS-CoV-2-specific memory B cell and T cell responses in healthy controls and individuals recovered from asymptomatic or symptomatic infection approximately 6 months prior. Comparatively low frequencies of memory B cells specific for the receptor-binding domain (RBD) of spike glycoprotein (S) persisted in the peripheral blood of individuals who recovered from infection (median 0.62%, interquartile range 0.48-0.69). The SARS-CoV-2 RBD-specific memory B cell response was detected in 2 of 13 individuals who recovered from asymptomatic infection and 10 of 20 individuals who recovered from symptomatic infection. T cell responses induced by S, membrane (M), and nucleocapsid (N) peptide libraries from SARS-CoV-2 were observed in individuals recovered from coronavirus disease 2019 (COVID-19), and cross-reactive T cell responses to SARS-CoV-2 were also detected in healthy controls.

5.
J Hepatol ; 74(3): 522-534, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32987030

RESUMO

BACKGROUND & AIMS: Current antiviral therapies help keep HBV under control, but they are not curative, as they are unable to eliminate the intracellular viral replication intermediate termed covalently closed circular DNA (cccDNA). Therefore, there remains an urgent need to develop strategies to cure CHB. Functional silencing of cccDNA is a crucial curative strategy that may be achieved by targeting the viral protein HBx. METHODS: We screened 2,000 small-molecule compounds for their ability to inhibit HiBiT-tagged HBx (HiBiT-HBx) expression by using a HiBiT lytic detection system. The antiviral activity of a candidate compound and underlying mechanism of its effect on cccDNA transcription were evaluated in HBV-infected cells and a humanised liver mouse model. RESULTS: Dicoumarol, an inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1), significantly reduced HBx expression. Moreover, dicoumarol showed potent antiviral activity against HBV RNAs, HBV DNA, HBsAg and HBc protein in HBV-infected cells and a humanised liver mouse model. Mechanistic studies demonstrated that endogenous NQO1 binds to and protects HBx protein from 20S proteasome-mediated degradation. NQO1 knockdown or dicoumarol treatment significantly reduced the recruitment of HBx to cccDNA and inhibited the transcriptional activity of cccDNA, which was associated with the establishment of a repressive chromatin state. The absence of HBx markedly blocked the antiviral effect induced by NQO1 knockdown or dicoumarol treatment in HBV-infected cells. CONCLUSIONS: Herein, we report on a novel small molecule that targets HBx to combat chronic HBV infection; we also reveal that NQO1 has a role in HBV replication through the regulation of HBx protein stability. LAY SUMMARY: Current antiviral therapies for hepatitis B are not curative because of their inability to eliminate covalently closed circular DNA (cccDNA), which persists in the nuclei of infected cells. HBV X (HBx) protein has an important role in regulating cccDNA transcription. Thus, targeting HBx to silence cccDNA transcription could be an important curative strategy. We identified that the small molecule dicoumarol could block cccDNA transcription by promoting HBx degradation; this is a promising therapeutic strategy for the treatment of chronic hepatitis B.


Assuntos
Antivirais/administração & dosagem , DNA Circular/metabolismo , Dicumarol/administração & dosagem , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteólise/efeitos dos fármacos , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , DNA Circular/isolamento & purificação , Modelos Animais de Doenças , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/genética , Transfecção , Resultado do Tratamento , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
6.
Genes Dis ; 7(4): 535-541, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32363222

RESUMO

In December 2019, the corona virus disease 2019 (COVID-19) caused by novel coronavirus (SARS-CoV-2) emerged in Wuhan, China and rapidly spread worldwide. Few information on clinical features and immunological profile of COVID-19 in paediatrics. The clinical features and treatment outcomes of twelve paediatric patients confirmed as COVID-19 were analyzed. The immunological features of children patients was investigated and compared with twenty adult patients. The median age was 14.5-years (range from 0.64 to 17), and six of the patients were male. The average incubation period was 8 days. Clinically, cough (9/12, 75%) and fever (7/12, 58.3%) were the most common symptoms. Four patients (33.3%) had diarrhea during the disease. As to the immune profile, children had higher amount of total T cell, CD8+ T cell and B cell but lower CRP levels than adults (P < 0.05). Ground-glass opacity (GGO) and local patchy shadowing were the typical radiological findings on chest CT scan. All patients received antiviral and symptomatic treatment and the symptom relieved in 3-4 days after admitted to hospital. The paediatric patients showed mild symptom but with longer incubation period. Children infected with SARS-CoV-2 had different immune profile with higher T cell amount and low inflammatory factors level, which might ascribed to the mild clinical symptom. We advise that nucleic acid test or examination of serum IgM/IgG antibodies against SARS-CoV-2 should be taken for children with exposure history regardless of clinical symptom.

7.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32382737

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Técnicas Imunoenzimáticas/métodos , Pneumonia Viral/diagnóstico , Testes Sorológicos/métodos , Adulto , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Medições Luminescentes , Masculino , Pessoa de Meia-Idade , Pandemias , Peptídeos/imunologia , Pneumonia Viral/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade , Proteínas Virais/imunologia
8.
Nat Med ; 26(6): 845-848, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350462

RESUMO

We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos/efeitos dos fármacos , Betacoronavirus/patogenicidade , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Adulto , Idoso , Formação de Anticorpos/imunologia , Antivirais/uso terapêutico , Betacoronavirus/genética , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2
9.
EBioMedicine ; 49: 232-246, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31680002

RESUMO

BACKGROUND: Hepatitis B surface antigen (HBsAg) is one of the important clinical indexes for hepatitis B virus (HBV) infection diagnosis and sustained seroconversion of HBsAg is an indicator for functional cure. However, the level of HBsAg could not be reduced by interferons and nucleoside analogs effectively. Therefore, identification of a new drug targeting HBsAg is urgently needed. METHODS: In this study, 6-AN was screened out from 1500 compounds due to its low cytotoxicity and high antiviral activity. The effect of 6-AN on HBV was examined in HepAD38, HepG2-NTCP and PHHs cells. In addition, the antivirus effect of 6-AN was also identified in mouse model. FINDINGS: 6-AN treatment resulted in a significant decrease of HBsAg and other viral markers both in vitro and in vivo. Furthermore, we found that 6-AN inhibited the activities of HBV SpI, SpII and core promoter by decreasing transcription factor PPARα, subsequently reduced HBV RNAs transcription and HBsAg production. INTERPRETATION: We have identified a novel small molecule to inhibit HBV core DNA, HBV RNAs, HBsAg production, as well as cccDNA to a minor degree both in vitro and in vivo. This study may shed light on the development of a novel class of anti-HBV agent.


Assuntos
6-Aminonicotinamida/farmacologia , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Replicação Viral/efeitos dos fármacos , 6-Aminonicotinamida/química , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos , Viremia/sangue
10.
Cancer Lett ; 451: 156-167, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867140

RESUMO

NAD(P)H: quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme which is associated with poor prognosis in human breast, colon, lung and liver cancers. However, the molecular mechanisms underlying the pro-tumorigenic function of NQO1 remains unclear. This study investigated the function of NQO1 in the context of hepatocellular carcinoma (HCC) development. We found that NQO1 was frequently up-regulated in human liver cancer, and its high expression level was correlated with the tumor stage and low survival rate of HCC patients. Loss-of-function of NQO1 inhibited growth in HCC cells with increased apoptosis in vitro, and suppressed orthotopic tumorigenicity in vivo. Mechanistically, high level of NQO1 in HCC cells enhanced protein stability of X-linked inhibitor of apoptosis protein (XIAP) by increasing its phosphorylation at Ser 87. Reintroduction of wile type XIAP and the phospho-mimic mutants XIAPS87D significantly reversed NQO1 knock-down/out induced growth inhibition and apoptosis. In mouse model with orthotopically implanted hepatocarcinoma, NQO1 suppression and NQO1 inhibitor suppressed tumor growth and induced apoptosis. NQO1 plays an important role in sustaining HCC cell proliferation and may thus act as a potential therapeutic target in HCC treatment.


Assuntos
Apoptose , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Transformada , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NAD(P)H Desidrogenase (Quinona)/genética , Fosforilação
11.
Hepatology ; 69(5): 1885-1902, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30614547

RESUMO

Hepatitis B virus (HBV) infection is a common infectious disease, in which nuclear covalently closed circular DNA (cccDNA) plays a key role in viral persistence, viral reactivation after treatment withdrawal, and drug resistance. A recent genome-wide association study has identified that the ubiquitin conjugating enzyme E2 L3 (UBE2L3) gene is associated with increased susceptibility to chronic HBV (CHB) infection in adults. However, the association between UBE2L3 and children with CHB and the underlying mechanism remain unclear. In this study, we performed two-stage case-control studies including adults and independent children in the Chinese Han population. The rs59391722 allele in the promoter of the UBE2L3 gene was significantly associated with HBV infection in both adults and children, and it increased the promoter activity of UBE2L3. Serum UBE2L3 protein levels were positively correlated with HBV viral load and hepatitis B e antigen (HBeAg) levels in children with CHB. In an HBV infection cell model, UBE2L3 knockdown significantly reduced total HBV RNAs, 3.5-kb RNA, as well as cccDNA in HBV-infected HepG2-Na+ /taurocholate cotransporting polypeptide cells and human primary hepatocytes. A mechanistic study found that UBE2L3 maintained cccDNA stability by inducing proteasome-dependent degradation of apolipoprotein B mRNA editing enzyme catalytic subunit 3A, which is responsible for the degradation of HBV cccDNA. Moreover, interferon-α (IFN-α) treatment markedly decreased UBE2L3 expression, while UBE2L3 silencing reinforced the antiviral activity of IFN-α on HBV RNAs, cccDNA, and DNA. rs59391722 in UBE2L3 was correlated with HBV DNA suppression and HBeAg loss in response to IFN-α treatment of children with CHB. Conclusion: These findings highlight a host gene, UBE2L3, contributing to the susceptibility to persistent HBV infection; UBE2L3 may be involved in IFN-mediated viral suppression and serve as a potential target in the prevention and treatment of HBV infection.


Assuntos
Citidina Desaminase/metabolismo , Hepatite B Crônica/genética , Enzimas de Conjugação de Ubiquitina/genética , Desaminases APOBEC , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , DNA Circular , Predisposição Genética para Doença , Células Hep G2 , Hepatite B Crônica/tratamento farmacológico , Humanos , Lactente , Interferon-alfa/uso terapêutico , Polimorfismo de Nucleotídeo Único , Enzimas de Conjugação de Ubiquitina/metabolismo , Replicação Viral
12.
Artigo em Inglês | MEDLINE | ID: mdl-30224531

RESUMO

The capsid of the hepatitis B virus is an attractive antiviral target for developing therapies against chronic hepatitis B infection. Currently available core protein allosteric modulators (CpAMs) mainly affect one of the two major types of protein-protein interactions involved in the process of capsid assembly, namely, the interaction between the core dimers. Compounds targeting the interaction between two core monomers have not been rigorously screened due to the lack of screening models. We report here a cell-based assay in which the formation of core dimers is indicated by split luciferase complementation (SLC). Making use of this model, 2 compounds, Arbidol (umifenovir) and 20-deoxyingenol, were identified from a library containing 672 compounds as core dimerization regulators. Arbidol and 20-deoxyingenol inhibit the hepatitis B virus (HBV) DNA replication in vitro by decreasing and increasing the formation of core dimer and capsid, respectively. Our results provided a proof of concept for the cell model to be used to screen new agents targeting the step of core dimer and capsid formation.


Assuntos
Antivirais/farmacologia , Diterpenos/farmacologia , Regulação Viral da Expressão Gênica , Vírus da Hepatite B/efeitos dos fármacos , Indóis/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/biossíntese , DNA Viral/genética , Genes Reporter , Células HEK293 , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Ensaios de Triagem em Larga Escala , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
13.
Hepatology ; 68(4): 1260-1276, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29624717

RESUMO

Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA), which serves as a template for HBV RNA transcription, is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified silent mating type information regulation 2 homolog 3 (SIRT3) as a host factor restricting HBV transcription and replication by screening seven members of the sirtuin family, which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA, as well as replicative intermediate DNA in HBV-infected HepG2-Na+ /taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. A mechanistic study found that nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9. Importantly, occupancy of SIRT3 on cccDNA could increase the recruitment of histone methyltransferase suppressor of variegation 3-9 homolog 1 to cccDNA and decrease recruitment of SET domain containing 1A, leading to a marked increase of trimethyl-histone H3 (Lys9) and a decrease of trimethyl-histone H3 (Lys4) on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor Yin Yang 1 to cccDNA. Finally, hepatitis B viral X protein could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. CONCLUSION: SIRT3 is a host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase; these data provide a rationale for the use of SIRT3 activators in the prevention or treatment of HBV infection. (Hepatology 2018).


Assuntos
DNA Viral/genética , Epigênese Genética/genética , Hepatite B/genética , Domínios PR-SET/genética , Sirtuína 3/genética , Replicação Viral/genética , DNA Complementar/genética , Hepatite B/fisiopatologia , Vírus da Hepatite B/genética , Histona Metiltransferases/metabolismo , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
14.
J Virol Methods ; 255: 52-59, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29447911

RESUMO

Fusion core proteins of Hepatitis B virus can be used to study core protein functions or capsid trafficking. A problem in constructing fusion core proteins is functional impairment of the individual domains in these fusion proteins, might due to structural interference. We reported a method to construct fusion proteins of Hepatitis B virus core protein (HBc) in which the functions of fused domains were partially kept. This method follows two principles: (1) fuse heterogeneous proteins at the N terminus of HBc; (2) use long Glycine-serine linkers between the two domains. Using EGFP and RFP as examples, we showed that long flexible G4S linkers can effectively separate the two domains in function. Among these fusion proteins constructed, GFP-G4S186-HBc and RFP-G4S47-HBc showed the best efficiency in rescuing the replication of an HBV replicon deficient in the core protein expression, though both of the two fusion proteins failed to support the formation of the relaxed circular DNA. These fluorescent protein-tagged HBcs might help study related to HBc or capsids tracking in cells.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B/virologia , Nucleocapsídeo/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Linhagem Celular , Vírus da Hepatite B/genética , Humanos , Nucleocapsídeo/química , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
15.
Biochem Biophys Res Commun ; 496(3): 904-910, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29366781

RESUMO

Sirtuin 2 (SIRT2) is a class III histone deacetylase that has been implicated to promote HCC development. However, the functional role of SIRT2 in HBV is still unclear. In this study, we found that HBV could upregulate SIRT2 expression. Additionally, HBx could activate SIRT2 promoter to upregulate the mRNA and protein level of SIRT2. Furthermore, we found that SIRT2 could facilitate HBV transcription and replication. Finally, we demonstrated that upregulation of SIRT2 by HBx promoted hepatocarcinogenesis. In summary, our findings revealed a novel function of SIRT2 in HBV and HBV-mediated HCC. First, SIRT2 could promote HBV replication. And then HBx-elevated SIRT2 could enhance the transformation of HBV-mediated HCC. Those findings highlight the potential role of SIRT2 in HBV and HBV-mediated HCC by interaction with HBx.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Sirtuína 2/metabolismo , Replicação Viral/fisiologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Hepatite B/metabolismo , Hepatite B/virologia , Humanos , Neoplasias Hepáticas/patologia
17.
Oncotarget ; 7(31): 50117-50130, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27367026

RESUMO

SIRT3, a class III histone deacetylase, has been implicated in various cancers as a novel therapeutic target. In hepatocellular carcinoma (HCC), we previously reported that SIRT3 induced cell apoptosis by regulating GSK-3ß/Bax signaling pathway. Downregulation of SIRT3 in HCC cells facilitates tumor cell survival. In this study, we found that chemotherapeutic agents (doxorubicin, cisplatin and epirubicin) and sorafenib treatment downregulated SIRT3 mRNA and protein levels in three HCC cell lines. MTS assay found that SIRT3 overexpression sensitized liver cancer cells to chemotherapeutic agents and sorafenib in SMMC-7721, Huh-7 and PLC/PRF/5 cell lines. Moreover, SIRT3 overexpression promoted chemotherapeutic agents-induced or sorafenib-induced apoptosis as evidenced by flow cytometry, enhanced PARP cleavage and enhanced Caspase-9 cleavage in three HCC cells. In contrast, SIRT3 silencing increased drug resistance of HCC cells to chemotherapeutic agents. Mechanistic study found that SIRT3 downregulated the mRNA and protein levels of glutathione S-transferase pi 1 (GSTP1), which is a member of phase II detoxification enzymes families involved in metabolizing for chemotherapeutic agents. Moreover, SIRT3 decreased the amount of GSTP1 that was associated with JNK, which finally contributed the activation of JNK activity and activation of downstream target c-Jun and Bim. Importantly, GSTP1 overexpression or JNK inhibitor abolished SIRT3-induced apoptosis in HCC cells exposed to chemotherapeutic agents. Finally, there was a negative correlation between SIRT3 expression and GSTP1 expression in human HCC tissues. Together, our findings revealed SIRT3 could enhance the drug sensitivity of HCC cells to an array of chemotherapeutic agents. SIRT3 may serve as a potential target for improving the chemosensitivity of HCC patients.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glutationa S-Transferase pi/metabolismo , Neoplasias Hepáticas/metabolismo , MAP Quinase Quinase 4/metabolismo , Sirtuína 3/metabolismo , Antineoplásicos/farmacologia , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Separação Celular , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glutationa , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Sorafenibe
18.
Antiviral Res ; 126: 99-107, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26738784

RESUMO

Nucleos(t)ide analogues (NUCs) susceptibility assay is important for the study of hepatitis B virus (HBV) drug resistance. The purpose of susceptibility assay is to test the sensitivity of a specific HBV variant to NUCs in vitro, by which assesses if and to what extent the mutant virus is resistant to a specific NUC. Among the existing susceptibility assay methods, stable cell line expressing the specific variant is one of the commonly used assessment systems based on its high repeatability. However, establishment of stable cell lines expressing individual variant is laborious and time-consuming. In the present study, we developed a novel strategy for rapidly establishing HBV replicating stable cell lines. We first established an acceptor cell line stably transfected with a polymerase-null HBV 1.1mer genome DNA, then lentiviruses expressing different mutant HBV polymerases were transduced into the acceptor cell line respectively. Stable cell lines replicating HBV DNA with the trans-complemented HBV polymerases were established by antibiotics selection. Lamivudine and entecavir susceptibility data from these polymerase-complementing cell lines were validated by comparing with other assays. Taken together, this transcomplementation strategy for establishment of stable cell lines replicating HBV DNA with clinically isolated HBV polymerase provides a new tool for NUC susceptibility assay of HBV.


Assuntos
Produtos do Gene pol/genética , Teste de Complementação Genética/métodos , Predisposição Genética para Doença , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Hepatite B/virologia , Nucleotídeos/farmacologia , Antivirais/farmacologia , Linhagem Celular , DNA Viral/genética , Farmacorresistência Viral , Produtos do Gene pol/metabolismo , Guanina/análogos & derivados , Guanina/farmacologia , Células HEK293 , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Lamivudina/farmacologia , Lentivirus/genética , Mutação , Vírus de RNA , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
19.
World J Gastroenterol ; 21(5): 1498-509, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25663769

RESUMO

AIM: To observe the effect of vincristine on hepatitis B virus (HBV) replication in vitro and to study its possible mechanisms. METHODS: Vincristine was added to the cultures of two cell lines stably expressing HBV. Then, the levels of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and hepatitis B core antigen (HBcAg) in the supernatants or cytoplasm were examined using by enzyme-linked immunosorbent assay and Western blot. The HBV pregenome RNA (pgRNA) was detected using reverse transcription-PCR and real-time fluorescent quantitative PCR (RT-qPCR), and viral DNA was detected using Southern blot and RT-qPCR. Cell proliferation after drug treatment was detected using the BrdU incorporation test and the trypan blue exclusion assay. Cell cycle and cell apoptosis were examined using flow cytometry and Western blot. RESULTS: Vincristine up-regulated HBV replication directly in vitro in a dose-dependent manner, and 24-h exposure to 0.1 µmol/L vincristine induced more than 4-fold and 3-fold increases in intracellular HBV DNA and the secretion of viral DNA, respectively. The expression of HBV pgRNA, intracellular HBsAg and HBcAg, and the secretion of HBeAg were also increased significantly after drug treatment. Most importantly, vincristine promoted the cell excretion of HBV nucleocapsids instead of HBV Dane particles, and the nucleocapsids are closely related to the HBV pathogenesis. Furthermore, vincristine inhibited the proliferation of cells stably expressing HBV. The higher the concentration of the drug, the more significant the inhibition of the cell proliferation and the stronger the HBV replication ability in cells. Flow cytometry indicated that cell cycle arrest at S-phase was responsible for the cell proliferation inhibition. CONCLUSION: Vincristine has a strong stimulatory effect on HBV replication and induces cell cycle arrest, and cell proliferation inhibition may be conducive to viral replication.


Assuntos
Antineoplásicos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Vincristina/farmacologia , Replicação Viral/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Viral/biossíntese , Relação Dose-Resposta a Droga , Células Hep G2 , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Humanos , RNA Viral/biossíntese , Fatores de Tempo , Transfecção , Ativação Viral/efeitos dos fármacos
20.
J Virol ; 88(5): 2442-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335313

RESUMO

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver cirrhosis and hepatocellular carcinoma. Nevertheless, the molecular mechanism of HBV replication remains elusive. SIRT1 is a class III histone deacetylase that is a structure component of the HBV cccDNA minichromosome. In this study, we found by using microarray-based gene expression profiling analysis that SIRT1 was upregulated in HBV-expressing cells. Gene silencing of SIRT1 significantly inhibited HBV DNA replicative intermediates, 3.5-kb mRNA, and core protein levels. In contrast, the overexpression of SIRT1 augmented HBV replication. Furthermore, SIRT1 enhanced the activity of HBV core promoter by targeting transcription factor AP-1. The c-Jun subunit of AP-1 was bound to the HBV core promoter region, as demonstrated by using a chromatin immunoprecipitation assay. Mutation of AP-1 binding site or knockdown of AP-1 abolished the effect of SIRT1 on HBV replication. Finally, SIRT1 inhibitor sirtinol also suppressed the HBV DNA replicative intermediate, as well as 3.5-kb mRNA. Our study identified a novel host factor, SIRT1, which may facilitate HBV replication in hepatocytes. These data suggest a rationale for the use of SIRT1 inhibitor in the treatment of HBV infection.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B/fisiologia , Sirtuína 1/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Replicação Viral , Linhagem Celular , Expressão Gênica , Inativação Gênica , Genes Virais , Inibidores de Histona Desacetilases/farmacologia , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...