Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(8): 289, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970698

RESUMO

Low molecular weight organic acids (LMWOAs) are important soil components and play a key role in regulating the geochemical behavior of heavy metal(loid)s. Biochar (BC) is a commonly used amendment that could change LMWOAs in soil. Here, four LMWOAs of oxalic acid (OA), tartaric acid (TA), malic acid (MA), and citric acid (CA) were evaluated for their roles in changing Cd and SB desorption behavior in contaminated soil with (S1-BC) or without BC (S1) produced from Paulownia biowaste. The results showed that OA, TA, MA, and CA reduced soil pH with rising concentrations, and biochar partially offset the pH reduction by LMWOAs. The LMWOAs reduced Cd desorption from the soil at low concentrations but increased Cd desorption at high concentrations, and CA was the most powerful in this regard. The LMWOAs had a similar effect on Sb desorption, and CA was the most effective species of LMWOAs. Adding BC to the soil affects Cd and Sb dynamics by reducing the Cd desorption but increasing Sb desorption from the soil and increasing the distribution coefficient (Kd) values of Cd but lowering the Kd values of Sb. This study helped understand the effects of LMWOAs on the geochemical behavior of Cd and Sb in the presence of biochar, as well as the potential risks of biochar amendment in enhancing Sb desorption from contaminated soil.


Assuntos
Carvão Vegetal , Metais Pesados , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/química , Metais Pesados/química , Solo/química , Peso Molecular , Concentração de Íons de Hidrogênio , Cádmio/química , Tartaratos/química , Malatos/química , Ácido Cítrico/química , Recuperação e Remediação Ambiental/métodos , Ácido Oxálico/química , Adsorção , Oryza/química
2.
Langmuir ; 39(31): 11016-11027, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499073

RESUMO

The adsorption of gaseous HCHO by raw lotus shell biochar carbonized at 500, 700, and 900 °C from the perspective of its internal crystal structure and surface functional groups was investigated by an integrated approach of experiments and density functional theory calculations. The results showed that lotus shell biochar carbonized at 700 °C had the best adsorption effect at a HCHO concentration of 10.50 ± 0.30 mg/m3, with an adsorption removal rate of 87.64%. The HCHO removal efficiency by lotus shell biochar carbonized at 500 and 900 °C was determined to be 80.96 and 83.07%, respectively. The HCHO adsorption on lotus shell biochar carbonized at 700 °C conformed to pseudo-second-order kinetics and was predominantly controlled by chemical adsorption. The Langmuir isotherm was the underlying mechanism for the monomolecular layer adsorption with a maximum adsorption capacity of 0.329 mg/g. The density functional theory calculations revealed that the adsorption of HCHO on the surface of CaCO3 and KCl in lotus shell biochar carbonized at 700 °C was a chemical adsorption process, with adsorption energies ranging from -64.375 to -87.554 kJ/mol. The strong interaction between HCHO and the surface was attributed to the electron transfer from HCHO to the surface, facilitated by metal atoms (Ca or K) and the oxygen atoms of HCHO. The carboxyl group on the surface of lotus shell biochar carbonized at 700 °C was identified as the key functional group responsible for HCHO adsorption. This study advanced our understanding of the environmental functions of inorganic crystals and surface functional groups in raw biochar and will enable the further development of biochar materials in environmental applications.

3.
PeerJ ; 10: e14162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225909

RESUMO

Humic acids (HAs) are complex organic substances with abundant functional groups (e.g., carboxyl, phenolic-OH, etc.). They are commonly distributed in the soil environment and exert a double-edged sword effect in controlling the migration and transformation of uranium. However, the effects of HAs on dynamic processes associated with uranium transformation are still unclear. In this study, we used HAs derived from leonardite (L-HA) and commercial HA (C-HA) as exogenous organic matter and C-HA as the reference. UO2, UO3, and UO2(NO3)2 were used as the sources of U to explore the fractionations of uranium in the soil. We also studied the behavior of the HA. The incubation experiments were designed to investigate the effects of HA on the soil pH, uranium fraction transformation, dynamic behavior of exchangeable, weak acid, and labile uranium. The observations were made for one month. The results showed that soil pH decreased for L-HA but increased for C-HA. Under these conditions, uranium tended to transform into an inactive fraction. The dynamic behavior of exchangeable, weak acid, and labile uranium varied with the sources of HA and uranium. This study highlighted that HA could affect soil pH and the dynamic redistribution of U fractions. The results suggest that the sources of HA and U should be considered when using HA as the remediation material for uranium-contaminated soils.


Assuntos
Substâncias Húmicas , Urânio , Substâncias Húmicas/análise , Solo/química , Urânio/análise , Minerais/química
4.
Environ Sci Pollut Res Int ; 29(39): 59043-59051, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35381922

RESUMO

As a commonly used amendment to soil contaminated by heavy metals, biochar has attracted great attention and has been applied for decades due to the benefits to the soil. However, the effects of biochar on the dynamic behavior of soil properties and metal fractions are still unclear. Here, we used two biochars, derived from biowastes (reed and bamboo willow), to treat two cadmium (Cd)-contaminated soils, S1 (loamy sand) and S2 (sandy loam), and determined the dynamic effects. The incubation experiments were designed to investigate the effects of biochar on the dynamic behavior of soil pH, dissolved organic matter (DOM), bioavailable Cd, and the transformation of Cd fractions for 270 days. The results showed that the soil pH, DOM, and bioavailable Cd initially increased and then decreased with incubation time, and the soil pH and DOM were higher, but bioavailable Cd content was lower than the original value. The transformation of the metal fractions changed dynamically, and the exchangeable fraction of Cd decreased with incubation time. Furthermore, the correlation results showed that the DOM can directly control the redistribution of Cd fractions, while soil pH can control it indirectly by regulating the DOM. This study highlighted that biochar can affect soil pH and DOM, redistribute Cd fractions, decrease bioavailable Cd content, and lower the potential risk of heavy metals. This study suggests ways to immobilize heavy metals in contaminated soils using biochar.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Carvão Vegetal/química , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
5.
Chemosphere ; 278: 130439, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33836401

RESUMO

The metal-binding characteristics of water-soluble organic matter (WSOM) emitted from biomass burning (BB, i.e., rice straw (RS) and corn straw (CS)) with Cu(II) under various pH conditions (i.e., 3, 4.5, and 6) were comprehensively investigated. Two-dimensional correlation spectroscopy (2D-COS) and excitation-emission matrix (EEM) -PARAFAC analysis were applied to investigate the binding affinity and mechanism of BB WSOM. The results showed that pH was a sensitive factor affecting binding affinities of WSOM, and BB WSOMs were more susceptible to bind with Cu(II) at pH 6.0 than pH 4.5, followed by pH 3.0. Therefore, the Cu(II)-binding behaviors of BB WSOMs at pH 6.0 were then investigated in this study. The 2D-absorption-COS revealed that the preferential binding with Cu(II) was in the order short and long wavelengths (237-239 nm and 307-309 nm) > moderate wavelength (267-269 nm). The 2D-synchronous fluorescence-COS results suggested that protein-like substances generally exhibited a higher susceptibility and preferential interaction with Cu(II) than fulvic-like substances. EEM-PARAFAC analysis demonstrated that protein-like (C1) substances had a greater complexation ability than fulvic-like (C2) and humic-like (C3) substances for both BB WSOM. This indicated that protein-like substances within WSOM played dominant roles in the interaction with Cu(II). As a comparison, RS WSOM generally showed stronger complexation capacity than CS WSOM although they exhibited similar chemical properties and compositions. This suggested the occurrence of heterogeneous active metal-binding sites even within similar chromophores for different WSOM. The results enhanced our understanding of binding behaviors of BB WSOM with Cu(II) in relevant atmospheric environments.


Assuntos
Cobre , Substâncias Húmicas , Biomassa , Análise Fatorial , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Água
6.
Environ Pollut ; 257: 113570, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31767234

RESUMO

Microplastics with extremely high abundances are universally detected in marine and terrestrial systems. Microplastic pollution in the aquatic environment, especially in ocean, has become a hot topic and raised global attention. However, microplastics in soils has been largely overlooked. In this paper, the analytical methods, occurrence, transport, and potential ecological risks of microplastics in soil environments have been reviewed. Although several analytical methods have been established, a universal, efficient, faster, and low-cost analytical method is still not available. The absence of a suitable analytical method is one of the biggest obstacles to study microplastics in soils. Current data on abundance and distribution of microplastics in soils are still limited, and results obtained from different studies differ significantly. Once entering into surface soil, microplastics can migrate to deep soil through different processes, e.g. leaching, bioturbation, and farming activities. Presence of microplastics with high abundance in soils can alter fundamental properties of soils. But current conclusions on microplastics on soil organisms are still conflicting. Overall, research on microplastics pollution in soils is still in its infancy and there are gaps in the knowledge of microplastics pollution in soil environments. Many questions such as pollution level, ecological risks, transport behaviors and the control mechanisms are still unclear, which needs further systematical study.


Assuntos
Microplásticos , Plásticos/análise , Poluentes do Solo/análise , Solo , Ecossistema , Monitoramento Ambiental , Poluição Ambiental , Plásticos/toxicidade , Poluentes do Solo/toxicidade
7.
J Hazard Mater ; 316: 102-9, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27214003

RESUMO

Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model.

8.
Chemosphere ; 138: 758-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26291756

RESUMO

Understanding the mechanisms and kinetics controlling the retention and transport of antimony (Sb) is prerequisite for evaluating the risk of groundwater contamination by the toxic element. In this study, kinetic batch and saturated miscible displacement experiments were performed to investigate effects of protonation-deprotonation reactions on sorption-desorption and transport of Sb(V) in iron oxide-coated sand (IOCS). Results clearly demonstrated that Sb(V) sorption was highly nonlinear and time dependent, where both sorption capacity and kinetic rates decreased with increasing solution pH. Breakthrough curves (BTCs) obtained at different solution pH exhibited that mobility of Sb(V) were higher under neutral to alkaline condition than under acidic condition. Because of the nonlinear and non-equilibrium nature of Sb(V) retention and transport, multi-reaction models (MRM) with equilibrium and kinetic sorption expressions were utilized successfully to simulate the experiment data. Equilibrium distribution coefficient (Ke) and reversible kinetic retention parameters (k1 and k2) of both kinetic sorption and transport experiment showed marked decrease as pH increased from 4.0 to 7.5. Surface complexation is suggested as the dominant mechanism for the observed pH-dependent phenomena, which need to be incorporated into the kinetic models to accurately simulate the reactive transport of Sb(V) in vadose zone and aquifers.


Assuntos
Antimônio/análise , Compostos Férricos/química , Modelos Teóricos , Dióxido de Silício/química , Adsorção , Antimônio/química , Concentração de Íons de Hidrogênio , Cinética
9.
Huan Jing Ke Xue ; 33(8): 2840-8, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23213913

RESUMO

The leaching of trace elements from tailings of an antimony mine in Guangxi Autonomous Region, China, was investigated through column leaching under wet-dry cycling and complete immersion conditions. Simulated acid rain (pH 4.0-4.4) and river water (pH 8.0) were used as the leaching solution. No matter the simulated acid rain or river water was used, the leachate always showed a slightly alkaline pH between 7.2 and 8.0, suggesting an acid neutralization capacity of the tailing. Compared to As and Pb, Sb was leached out to a much higher extent in this circumstance. Furthermore, Sb release was largely enhanced in wet-dry cycle compared to the complete immersion condition. In contrast, As was leached more readily in the complete immersion condition, and the longer the tailings were immersed in water, the higher the As concentration in the leachate. The leachate on day 5 and day 10 showed 1-2 times higher As concentration as compared with the leachate on day 1 and day 2. The leaching of Mn and Zn by simulated acid rain was much stronger than that by river water, and the release of Mn and Zn was more significantly affected by pH than by O2 (i.e., the difference between the wet-dry cycle and complete immersion condition). Sr showed a high release rate that was not affected by leaching solution or air-exposure condition. Basically, Pb showed a very low leaching potential. In general, an alkaline circumstance combined with wet-dry cycle forms the favorable condition for the release of Sb in the tailings.


Assuntos
Antimônio/análise , Mineração , Poluentes do Solo/análise , Oligoelementos/análise , Arsênio/análise , China , Monitoramento Ambiental , Manganês/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...