Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 306(12): 3199-3213, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36440653

RESUMO

Ferroptosis-related renal tubular lesions play important roles in diabetic kidney disease (DKD) progression, and these pathophysiological responses are collectively described as diabetic tubulopathy (DT), which lacks an effective treatment. Total flavones from Abelmoschus manihot (TFA), a natural extract that extensively used in patients with chronic kidney disease, has been used for treatment of renal tubular injury in DKD; however, whether TFA alleviates DT and its potential mechanisms remain unclear. Hence, we investigated the effects of TFA, compared to dapagliflozin, in DT management both in vivo and in vitro, using a DKD rat model and the NRK-52 E cells. Following modeling, the DKD rats received TFA, dapagliflozin, or vehicle for 6 weeks. For the in vitro research, the NRK-52 E cells were exposed to advanced glycation end products (AGEs) plus ferrostatin-1 (Fer-1), dapagliflozin, or TFA. Changes in biochemical parameters and renal tubular injury were analyzed in vivo, while changes in ferroptosis of renal tubular cells and the ferroptosis-related proteins expression were analyzed both in vivo and in vitro. We found that TFA and dapagliflozin improved biochemical parameters, renal tubular injury, and ferroptosis in the DKD rats. Moreover, TFA and dapagliflozin inhibited ferroptosis by ameliorating iron deposition, lipid peroxidation capacity, and ferroptosis-related proteins expression in vitro, which was similar to the effects of Fer-1. Collectively, this study demonstrated that TFA treated DT in a manner similar to dapagliflozin by inhibiting ferroptosis of renal tubular cells via improving iron deposition and antioxidant capacity. Our findings provide new pharmacological evidence for TFA application in DT treatment.


Assuntos
Abelmoschus , Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Flavonas , Ratos , Humanos , Animais , Flavonas/farmacologia , Flavonas/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Ferro/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
2.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4119-4127, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046902

RESUMO

To explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a classical prescription, in improving testicular aging(TA) in vivo, the authors randomly divided 24 male rats into four groups: the normal, model, DHZCP and vitamin E(VE) groups. The TA rat model was established by continuous gavage of D-galactose(D-gal). During the experiment, the rats in the DHZCP and VE groups were given DHZCP suspension and VE suspension, respectively by gavage, while those in the normal and model groups were gavaged saline separately every day. After the co-administration of D-gal and various drugs for 60 days, all rats were sacrificed, and their blood and testis were collected. Further, various indexes related to TA and necroptosis of testicular cells in the model rats were examined and investigated, which included the aging phenotype, total testicular weight, testicular index, histopathological features of testis, number of spermatogenic cells, sex hormone level, expression characteristics of reactive oxygen species(ROS) in testis, expression levels and characteristics of cyclins in testis, and protein expression levels of the key molecules in receptor-interacting serine/threonine-protein kinase 1(RIPK1)/receptor-interacting serine/threonine-protein kinase 3(RIPK3)/mixed lineage kinase domain like pseudokinase(MLKL) signaling pathway in each group. The results showed that, for the TA model rats, both DHZCP and VE improved their aging phenotype, total testicular weight, testicular index, pathological features of testis, number of spermatogenic cells, serum testosterone and follicle stimulating hormone levels, expression characteristics of ROS and protein expression levels and characteristics of P21 and P53 in testis. In addition, DHZCP and VE improved the protein expression levels of the key molecules in RIPK1/RIPK3/MLKL signaling pathway in testis of the model rats. Specifically, DHZCP was better than VE in the improvement of RIPK3. In conclusion, in this study, the authors found that DHZCP, similar to VE, ameliorated D-gal-induced TA in model rats in vivo, and its mechanism was related to reducing necroptosis of testicular cells by inhibiting the activation of RIPK1/RIPK3/MLKL signaling pathway. This study provided preliminary pharmacological evidence for the development and application of classical prescriptions in the field of men's health.


Assuntos
Necroptose , Testículo , Envelhecimento , Animais , Medicamentos de Ervas Chinesas , Masculino , Proteínas Quinases/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Serina/farmacologia , Transdução de Sinais , Treonina/farmacologia
3.
Vet Immunol Immunopathol ; 128(4): 407-12, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19117611

RESUMO

A proliferation-inducing ligand (APRIL) is a novel member of the tumor necrosis factor (TNF) family, which is involved in immune regulation. In this study, the cDNA of dog APRIL (dAPRIL) was amplified from dog spleen by RT-PCR. The open reading frame (ORF) of dAPRIL encodes a protein of 250-amino acid, containing a predicted transmembrane domain and a putative furin protease cleavage site like other mammalian APRILs. The amino acid identities between biologically soluble dAPRIL and its pig, human, rabbit and mouse counterparts are 91%, 86%, 88% and 86%, respectively, dramatically higher than most other known cytokines. The result of real-time PCR revealed that dAPRIL is expressed in various tissues and is elevated in thymus and spleen. Recombinant soluble dAPRIL (dsAPRIL) fused with NusA.tag was efficiently produced in Origami B (DE3) pLysS expression host strain. In vitro, purified dsAPRIL was able to co-stimulate the proliferation of dog splenic B cells in response to anti-IgM. These findings indicate that dAPRIL plays an important role in survival/proliferation of dog B cells and provide the basis for investigation on the roles of APRIL in this important domestic species.


Assuntos
Cães/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Sequência de Bases , Western Blotting/veterinária , Sobrevivência Celular/imunologia , Clonagem Molecular , Cães/genética , Masculino , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/biossíntese , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia
4.
Eur J Pharmacol ; 596(1-3): 160-5, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18789317

RESUMO

Lipopolysaccharide (LPS) is a major constituent of the outer membrane of Gram-negative bacteria. Binding of LPS to the CD14+ murine macrophage cell line RAW264.7 results in pro-inflammatory cytokine secretion. In extreme cases, it leads to septic shock in vivo. Therefore, the pursuit for molecules with antiendotoxin properties is urgent. In this study, we investigated the efficacy of antibacterial peptide CM4 in binding Escherichia coli LPS in vitro. CM4 avidly bound to E. coli LPS, as proven by the limulus amoebocyte lysate assay. Furthermore, the killing activity of CM4 against E. coli was progressively inhibited by increasing concentrations of LPS added to the medium, further confirming the peptide's affinity for endotoxin. Flow cytometric analysis revealed that CM4 inhibited the binding of FITC-conjugated LPS to RAW264.7 cells. Likewise, the inhibition of peptide to LPS-dependent cytokine induction was analyzed. CM4 suppressed LPS-induced TNF-alpha and IL-6 mRNA expression and blocked release of TNF-alpha and NO following LPS challenge in RAW264.7 cells. Together these observations indicate that antibacterial peptide CM4 probably exerts protective actions against endotoxin shock by blocking the binding of LPS to CD14+ cells.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Interleucina-6/biossíntese , Interleucina-6/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Ligação Proteica , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...