Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489884

RESUMO

African swine fever (ASF) is a contagious viral disease that affects domestic pigs and wild boars, causing significant economic losses globally. After the first Nigerian outbreak in 1997, there have been frequent reports of ASF in pig-producing regions in the country. To facilitate control, it is important to understand the genotype and phylogenetic relationship of ASF viruses (ASFVs). Recent genetic analysis of Nigerian ASFV isolates has revealed the presence of both genotypes I and II; this is based on analysis of a few selected genes. Phylogenetic analysis of ASFV whole genomes highlights virus origins and evolution in greater depth. However, there is currently no information on the ASFV genome from Nigerian isolates. Two ASFV-positive samples were detected during a random survey of 150 Nigerian indigenous pig samples collected in 2016. We assembled near-complete genomes of the two ASFV-positive samples using in-solution hybrid capture sequencing. The genome-wide phylogenetic tree assigned these two genomes into p72 genotype I, particularly close to the virulent Benin 97/1 strain. The two ASFVs share 99.94 and 99.92 % genomic sequence identity to Benin97/1. This provides insight into the origin and relationship of ASFV strains from Nigeria and Italy. The study reports for the first time the determination of near-complete genomes of ASFV using in-solution hybrid capture sequencing, which represents an important advance in understanding the global evolutionary landscape of ASFVs.


Assuntos
Febre Suína Africana , Suínos , Animais , Filogenia , Genótipo , Genômica , Surtos de Doenças , Sus scrofa
2.
Mol Ecol Resour ; 23(5): 1014-1022, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36756726

RESUMO

Long-read sequencing technology is a powerful approach with application in various genetic and genomic research. Herein, we developed the pipeline for long amplicon high-fidelity (HiFi) sequencing and then applied it for sequencing mitochondrial DNA (mtDNA) genomes from pools of 79 Tibetan Mastiffs. We amplified the mtDNA genome with long-range PCR using two pairs of primers. Two rounds of circular consensus sequencing (CCS) were conducted and their accuracy was evaluated. The results indicate that the second round of CCS can improve the accuracy of HiFi reads. In addition, the analysis of 79 high-quality mtDNA genomes shows the Tibetan Mastiffs from outside of the Tibetan Plateau experienced hybridization with other dogs. The high quality reads generator (HQGR) software is provided to facilitate data analyses, which is publicly accessible on GitHub (https://github.com/Caizf-script/HQGR). Our long amplicon HiFi sequencing pipeline can also be applied in various target enrichment strategies for small genomes and candidate genes.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , Cães , DNA Mitocondrial/genética , Análise de Sequência de DNA/métodos , Genômica/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Zool Res ; 42(6): 834-844, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34766482

RESUMO

Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks. A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses (SC2r-CoVs). Here, we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species, and detected positive signals in muscles of four Manis javanica and, for the first time, one M. pentadactyla. Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia. Using in-solution hybridization capture sequencing, we assembled a partial pangolin SC2r-CoV (pangolin-CoV) genome sequence of 22 895 bp (MP20) from the M. pentadactyla sample. Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M. javanica seized by Guangxi Customs. A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated. Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated. Given the potential infectivity of pangolin-CoVs, the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.


Assuntos
COVID-19/veterinária , Evolução Molecular , Pangolins/virologia , SARS-CoV-2/genética , Animais , Genoma Viral , Filogenia , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...