Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 120, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759137

RESUMO

Today performance and operational efficiency of computer systems on digital image processing are exacerbated owing to the increased complexity of image processing. It is also difficult for image processors based on complementary metal-oxide-semiconductor (CMOS) transistors to continuously increase the integration density, causing by their underlying physical restriction and economic costs. However, such obstacles can be eliminated by non-volatile resistive memory technologies (known as memristors), arising from their compacted area, speed, power consumption high efficiency, and in-memory computing capability. This review begins with presenting the image processing methods based on pure algorithm and conventional CMOS-based digital image processing strategies. Subsequently, current issues faced by digital image processing and the strategies adopted for overcoming these issues, are discussed. The state-of-the-art memristor technologies and their challenges in digital image processing applications are also introduced, such as memristor-based image compression, memristor-based edge and line detections, and voice and image recognition using memristors. This review finally envisages the prospects for successful implementation of memristor devices in digital image processing.

2.
Nanotechnology ; 33(49)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35973383

RESUMO

Phase-change optical device has recently gained tremendous interest due to its ultra-fast transmitting speed, multiplexing and large bandwidth. However, majority of phase-change optical devices are only devoted to on-chip components such as optical tensor core and optical main memory, while developing a secondary storage memory in an optical manner is rarely reported. To address this issue, we propose a novel phase-change optical memory based on plasmonic resonance effects for secondary storage applications. Such design makes use of the plasmonic dimer nanoantenna to generate plasmonic resonance inside the chalcogenide alloy, and thus enables the performance improvements in terms of energy consumption and switching speed. It is found that choosing height, radius, and separation of the plasmonic nanoantenna as 10 nm, 150 nm, and 10 nm, respectively, allows for a write/erase energies of 100 and 240 pJ and a write/erase speed of 10 ns for crystallization and amorphization processes, respectively. Such performance merits encouragingly prevail conventional secondary storage memories and thus pave a route towards the advent of all-optical computer in near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...