Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38671995

RESUMO

Emotion recognition using the electroencephalogram (EEG) has garnered significant attention within the realm of human-computer interaction due to the wealth of genuine emotional data stored in EEG signals. However, traditional emotion recognition methods are deficient in mining the connection between multi-domain features and fitting their advantages. In this paper, we propose a novel capsule Transformer network based on a multi-domain feature for EEG-based emotion recognition, referred to as MES-CTNet. The model's core consists of a multichannel capsule neural network(CapsNet) embedded with ECA (Efficient Channel Attention) and SE (Squeeze and Excitation) blocks and a Transformer-based temporal coding layer. Firstly, a multi-domain feature map is constructed by combining the space-frequency-time characteristics of the multi-domain features as inputs to the model. Then, the local emotion features are extracted from the multi-domain feature maps by the improved CapsNet. Finally, the Transformer-based temporal coding layer is utilized to globally perceive the emotion feature information of the continuous time slices to obtain a final emotion state. The paper fully experimented on two standard datasets with different emotion labels, the DEAP and SEED datasets. On the DEAP dataset, MES-CTNet achieved an average accuracy of 98.31% in the valence dimension and 98.28% in the arousal dimension; it achieved 94.91% for the cross-session task on the SEED dataset, demonstrating superior performance compared to traditional EEG emotion recognition methods. The MES-CTNet method, utilizing a multi-domain feature map as proposed herein, offers a broader observation perspective for EEG-based emotion recognition. It significantly enhances the classification recognition rate, thereby holding considerable theoretical and practical value in the EEG emotion recognition domain.

2.
Org Lett ; 23(13): 5158-5163, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34152156

RESUMO

Industrially important triaryl phosphites, traditionally prepared from PCl3, have been synthesized by a diphenyl diselenide-catalyzed one-step procedure involving white phosphorus and phenols, which provides a halogen- and transition metal-free way to these compounds. Subsequent oxidation of triaryl phosphites produces triaryl phosphates and triaryl thiophosphates. Phosphorotrithioates are also prepared efficiently from aromatic thiols and aliphatic thiols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...