Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502869

RESUMO

Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning-the combustion of logging residue on the forest floor-is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and surrounding regenerating forest after clear-cut harvesting provides a unique opportunity to assess whether belowground microbial processes mirror aboveground vegetation during disturbance-induced ecosystem shifts. Soil ectomycorrhizal fungal diversity was reduced the first decade after pile burning, which could explain poor tree seedling establishment and subsequent persistence of herbaceous species within the openings. Fine-scale changes in the soil microbiome mirrored aboveground shifts in vegetation, with short-term changes to microbial carbon cycling functions resembling a postfire microbiome (e.g. enrichment of aromatic degradation genes) and respiration in burn scars decoupled from substrate quantity and quality. Broadly, however, soil microbiome composition and function within burn scar soils converged with that of the surrounding regenerating forest six decades after the disturbances, indicating potential microbial resilience that was disconnected from aboveground vegetation shifts. This work begins to unravel the belowground microbial processes that underlie disturbance-induced ecosystem changes, which are increasing in frequency tied to climate change.


Assuntos
Microbiota , Ecossistema , Retroalimentação , Florestas , Solo/química
2.
Curr Biol ; 31(24): 5558-5570.e3, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34715015

RESUMO

Dispersal is a key process that impacts population dynamics and structures biotic communities. Dispersal limitation influences the assembly of plant and microbial communities, including mycorrhizal fungi and their plant hosts. Mycorrhizal fungi play key ecological roles in forests by feeding nutrients to plants in exchange for sugars, so the dispersal of mycorrhizal fungi spores actively shapes plant communities. Although many fungi rely on wind for spore dispersal, some fungi have lost the ability to shoot their spores into the air and instead produce enclosed belowground fruiting bodies (truffles) that rely on animals for dispersal. The role of mammals in fungal spore dispersal is well documented, but the relevance of birds as dispersal agents of fungi has been understudied, despite the prominence of birds as seed dispersal vectors. Here, we use metagenomics and epifluorescence microscopy to demonstrate that two common, widespread, and endemic Patagonian birds, chucao tapaculos (Scelorchilus rubecula) and black-throated huet-huets (Pteroptochos tarnii), regularly consume mycorrhizal fungi and disperse viable spores via mycophagy. Our metagenomic analysis indicates that these birds routinely consume diverse mycorrhizal fungi, including many truffles, that are symbiotically associated with Nothofagaceae trees that dominate Patagonian forests. Epifluorescence microscopy of fecal samples confirmed that the birds dispersed copious viable spores from truffles and other mycorrhizal fungi. We show that fungi are a common food for both bird species and that this animal-fungi symbiosis is widespread and ecologically important in Patagonia. Our findings indicate that birds may also act as cryptic but critical fungal dispersal agents in other ecosystems.


Assuntos
Micorrizas , Dispersão de Sementes , Animais , Aves , Ecossistema , Florestas , Fungos/genética , Mamíferos , Plantas/microbiologia
3.
Mycologia ; 113(5): 1022-1055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236939

RESUMO

In the Patagonian region, Cortinarius is the most diverse and abundant genus of ectomycorrhizal fungi with at least 250 species. Sequestrate forms were until recently documented within the genus Thaxterogaster, a genus now known to be polyphyletic, and many were consequently transferred to Cortinarius. Original descriptions were mostly available in German and Spanish and interpretations of morphological structures outdated. Despite recent advances in Cortinarius systematics, the current classification, diversity, and ecology of sequestrate "cortinarioid" fungi in Patagonia remain unclear. The objective of this study was to provide an update on sequestrate Cortinarius of southern South America. We documented each species with morphological descriptions, photographs, basidiospore scanning electron microscopy (SEM) images, and molecular characterization using nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and nuc 28S rDNA (28S) sequence data. Original descriptions of taxa were also translated to English and revised based on fresh collections. We documented 24 species from Patagonia based on molecular data and conducted morphological and phylogenetic analysis for 18 previously described species based on type and reference specimens. In addition, we formally described two new species. Four additional taxa were provisionally determined as new but require further study. New ITS sequence data were produced from eight type specimens. We also provide a new name, Cortinarius gloiodes, nom. nov., for the taxon previously described as Thaxterogaster gliocyclus. In addition to the species treated in detail, we provided additional reference information and discussion on six described species that remained incompletely known or for which no recent collections were found. Of the 24 taxa documented from Patagonia, 15 species were assigned to 12 current sections in the genus Cortinarius. Analysis of spore ultrastructure showed that sequestrate forms of Patagonian Cortinarius lack a true perisporium.


Assuntos
Agaricales , Cortinarius , Agaricales/genética , Cortinarius/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Filogenia , Análise de Sequência de DNA
4.
Mycologia ; 113(3): 629-642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651667

RESUMO

Sequestrate fungi have enclosed hypogeous, subhypogeous, or epigeous basidiomes and have lost the ability to actively discharge their spores. They can be distinguished as gasteroid (basidiome fully enclosed with a loculated hymenophore) or secotioid (basidiome with some agaricoid or pileate-stipitate features, but the lamellae are misshapen and unexposed or mostly unexposed at maturity). There are only four reports of sequestrate taxa within the ectomycorrhizal family Inocybaceae, three from Australia and one from western North America. Recent field work in Nothofagaceae forests in the Chilean coastal range revealed novel sequestrate forms of Inocybe. We examined specimens using a combination of morphological and molecular data from nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and portions of nuc 28S rDNA (28S) and the gene encoding the second largest subunit of RNA polymerase II (rpb2). Here, we describe four new sequestrate Inocybe species, I. ranunculiformis, I. anfractuosa, I. illariae, and I. nahuelbutensis. Results of our phylogenetic analysis resolved the four new species as distinct species-level clades with strong support, suggesting that these fungi have convergently evolved sequestrate forms independently. The species described here were all placed along with members of the "smooth-spored temperate austral clade," which includes almost exclusively Australasian and South American species of Inocybe.


Assuntos
Florestas , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...