Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Atherosclerosis ; : 117549, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38679562

RESUMO

BACKGROUND AND AIMS: This study investigated the additional prognostic value of epicardial adipose tissue (EAT) volume for major adverse cardiovascular events (MACE) in patients undergoing stress cardiac magnetic resonance (CMR) imaging. METHODS: 730 consecutive patients [mean age: 63 ± 10 years; 616 men] who underwent stress CMR for known or suspected coronary artery disease were randomly divided into derivation (n = 365) and validation (n = 365) cohorts. MACE was defined as non-fatal myocardial infarction and cardiac deaths. A deep learning algorithm was developed and trained to quantify EAT volume from CMR. EAT volume was adjusted for height (EAT volume index). A composite CMR-based risk score by Cox analysis of the risk of MACE was created. RESULTS: In the derivation cohort, 32 patients (8.7 %) developed MACE during a follow-up of 2103 days. Left ventricular ejection fraction (LVEF) < 35 % (HR 4.407 [95 % CI 1.903-10.202]; p<0.001), stress perfusion defect (HR 3.550 [95 % CI 1.765-7.138]; p<0.001), late gadolinium enhancement (LGE) (HR 4.428 [95%CI 1.822-10.759]; p = 0.001) and EAT volume index (HR 1.082 [95 % CI 1.045-1.120]; p<0.001) were independent predictors of MACE. In a multivariate Cox regression analysis, adding EAT volume index to a composite risk score including LVEF, stress perfusion defect and LGE provided additional value in MACE prediction, with a net reclassification improvement of 0.683 (95%CI, 0.336-1.03; p<0.001). The combined evaluation of risk score and EAT volume index showed a higher Harrel C statistic as compared to risk score (0.85 vs. 0.76; p<0.001) and EAT volume index alone (0.85 vs.0.74; p<0.001). These findings were confirmed in the validation cohort. CONCLUSIONS: In patients with clinically indicated stress CMR, fully automated EAT volume measured by deep learning can provide additional prognostic information on top of standard clinical and imaging parameters.

2.
Chemosphere ; 353: 141495, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373448

RESUMO

The cardiovascular risk associated with short-term ambient air pollution exposure is well-documented. However, recent advancements in geospatial techniques have provided new insights into this risk. This systematic review focuses on short-term exposure studies that applied advanced geospatial pollution modelling to estimate cardiovascular disease (CVD) risk and accounted for additional unconventional neighbourhood-level confounders to analyse their modifier effect on the risk. Four databases were investigated to select publications between 2018 and 2023 that met the inclusion criteria of studying the effect of particulate matter (PM2.5 and PM10), SO2, NOx, CO, and O3 on CVD mortality or morbidity, utilizing pollution modelling techniques, and considering spatial and temporal confounders. Out of 3277 publications, 285 were identified for full-text review, of which 34 satisfied the inclusion criteria for qualitative analysis, and 12 of them were chosen for additional quantitative analysis. Quality assessment revealed that 28 out of 34 included articles scored 4 or above, indicating high quality. In 30 studies, advanced pollution modelling techniques were used, while in 4 only simpler methods were applied. The most pertinent confounders identified were socio-demographic variables (e.g., socio-economic status, population percentage by race or ethnicity) and neighbourhood-level built environment variables (e.g., urban/rural area, percentage of green space, proximity to healthcare), which exhibited varying modifier effects depending on the context. In the quantitative analysis, only PM 2.5 showed a significant positive association to all-cause CVD-related hospitalisation. Other pollutants did not show any significant effect, likely due to the high inter-study heterogeneity and a limited number of cases. The application of advanced geospatial measurement and modelling of air pollution exposure, as well as its risk, is increasing. This review underscores the importance of accounting for unconventional neighbourhood-level confounders to enhance the understanding of the CVD risk associated with short-term pollution exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Humanos , Poluentes Atmosféricos/análise , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise
3.
Chemosphere ; 352: 141438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367880

RESUMO

Air pollution is considered one of the major environmental risks to health worldwide. Researchers are making significant efforts to study it, thanks to state-of-art technologies in data collection and processing, and to mitigate its effect. In this context, while a lot is known about the role of urbanization, industries, and transport, the impact of agricultural activities on the spatial distribution of pollution is less studied, despite knowledge about emissions suggest it is not a secondary factor. Therefore, the aim of this study was to assess this impact, and to compare it with that of traditional polluting sources, harvesting the capabilities of GEOAI (Geomatics and Earth Observation Artificial Intelligence). The analysis targeted the highly polluted territory of Lombardy, Italy, considering fine particulate matter (PM2.5). PM2.5 data were obtained from the Copernicus-Atmosphere-Monitoring-Service and processed to infer time-invariant spatial parameters (frequency, intensity and exposure) of concentration across the whole period. An ensemble architecture was implemented, with three blocks: correlation-based features selection, Multiscale-Geographically-Weighted-Regression for spatial enhancement, and a final random forest classifier. Finally, the SHapley Additive exPlanation algorithm was applied to compute the relevance of the different land-use classes on the model. The impact of land-use classes was found significantly higher compared to other published models, showing that the insignificant correlations found in the literature are probably due to an unfit experimental setup. The impact of agricultural activities on the spatial distribution of PM2.5 concentration was comparable to the other considered sources, even when focusing only on the most densely inhabited urban areas. In particular, the agriculture's contribution resulted in pollution spikes rather than in a baseline increase. These results allow to state that public policymakers should consider also agricultural activities for evidence-based decision-making about pollution mitigation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Inteligência Artificial , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , Agricultura
4.
Public Health Rev ; 44: 1606266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908198

RESUMO

Objectives: We aimed to analyze recent literature on heat effects on cardiovascular morbidity and mortality, focusing on the adopted heat definitions and their eventual impact on the results of the analysis. Methods: The search was performed on PubMed, ScienceDirect, and Scopus databases: 54 articles, published between January 2018 and September 2022, were selected as relevant. Results: In total, 21 different combinations of criteria were found for defining heat, 12 of which were based on air temperature, while the others combined it with other meteorological factors. By a simulation study, we showed how such complex indices could result in different values at reference conditions depending on temperature. Heat thresholds, mostly set using percentile or absolute values of the index, were applied to compare the risk of a cardiovascular health event in heat days with the respective risk in non-heat days. The larger threshold's deviation from the mean annual temperature, as well as higher temperature thresholds within the same study location, led to stronger negative effects. Conclusion: To better analyze trends in the characteristics of heatwaves, and their impact on cardiovascular health, an international harmonization effort to define a common standard is recommendable.

5.
Emerg Med J ; 40(12): 810-820, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37775256

RESUMO

BACKGROUND: The regional emergency medical service (EMS) in Lombardy (Italy) developed clinical algorithms based on operator-based interviews to detect patients with COVID-19 and refer them to the most appropriate hospitals. Machine learning (ML)-based models using additional clinical and geospatial epidemiological data may improve the identification of infected patients and guide EMS in detecting COVID-19 cases before confirmation with SARS-CoV-2 reverse transcriptase PCR (rtPCR). METHODS: This was an observational, retrospective cohort study using data from October 2020 to July 2021 (training set) and October 2021 to December 2021 (validation set) from patients who underwent a SARS-CoV-2 rtPCR test within 7 days of an EMS call. The performance of an operator-based interview using close contact history and signs/symptoms of COVID-19 was assessed in the training set for its ability to determine which patients had an rtPCR in the 7 days before or after the call. The interview accuracy was compared with four supervised ML models to predict positivity for SARS-CoV-2 within 7 days using readily available prehospital data retrieved from both training and validation sets. RESULTS: The training set includes 264 976 patients, median age 74 (IQR 55-84). Test characteristics for the detection of COVID-19-positive patients of the operator-based interview were: sensitivity 85.5%, specificity 58.7%, positive predictive value (PPV) 37.5% and negative predictive value (NPV) 93.3%. Contact history, fever and cough showed the highest association with SARS-CoV-2 infection. In the validation set (103 336 patients, median age 73 (IQR 50-84)), the best-performing ML model had an AUC of 0.85 (95% CI 0.84 to 0.86), sensitivity 91.4% (95 CI% 0.91 to 0.92), specificity 44.2% (95% CI 0.44 to 0.45) and accuracy 85% (95% CI 0.84 to 0.85). PPV and NPV were 13.3% (95% CI 0.13 to 0.14) and 98.2% (95% CI 0.98 to 0.98), respectively. Contact history, fever, call geographical distribution and cough were the most important variables in determining the outcome. CONCLUSION: ML-based models might help EMS identify patients with SARS-CoV-2 infection, and in guiding EMS allocation of hospital resources based on prespecified criteria.


Assuntos
COVID-19 , Serviços Médicos de Emergência , Humanos , Idoso , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Tosse , Sensibilidade e Especificidade , Aprendizado de Máquina
6.
Europace ; 25(8)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37622574

RESUMO

AIMS: Over the past 25 years there has been a substantial development in the field of digital electrophysiology (EP) and in parallel a substantial increase in publications on digital cardiology.In this celebratory paper, we provide an overview of the digital field by highlighting publications from the field focusing on the EP Europace journal. RESULTS: In this journey across the past quarter of a century we follow the development of digital tools commonly used in the clinic spanning from the initiation of digital clinics through the early days of telemonitoring, to wearables, mobile applications, and the use of fully virtual clinics. We then provide a chronicle of the field of artificial intelligence, a regulatory perspective, and at the end of our journey provide a future outlook for digital EP. CONCLUSION: Over the past 25 years Europace has published a substantial number of papers on digital EP, with a marked expansion in digital publications in recent years.


Assuntos
Cardiologia , Aplicativos Móveis , Humanos , Inteligência Artificial , Eletrofisiologia Cardíaca , Cognição
7.
Front Cardiovasc Med ; 10: 1151705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424918

RESUMO

Aims: Diagnosis of myocardial fibrosis is commonly performed with late gadolinium contrast-enhanced (CE) cardiac magnetic resonance (CMR), which might be contraindicated or unavailable. Coronary computed tomography (CCT) is emerging as an alternative to CMR. We sought to evaluate whether a deep learning (DL) model could allow identification of myocardial fibrosis from routine early CE-CCT images. Methods and results: Fifty consecutive patients with known left ventricular (LV) dysfunction (LVD) underwent both CE-CMR and (early and late) CE-CCT. According to the CE-CMR patterns, patients were classified as ischemic (n = 15, 30%) or non-ischemic (n = 35, 70%) LVD. Delayed enhancement regions were manually traced on late CE-CCT using CE-CMR as reference. On early CE-CCT images, the myocardial sectors were extracted according to AHA 16-segment model and labeled as with scar or not, based on the late CE-CCT manual tracing. A DL model was developed to classify each segment. A total of 44,187 LV segments were analyzed, resulting in accuracy of 71% and area under the ROC curve of 76% (95% CI: 72%-81%), while, with the bull's eye segmental comparison of CE-CMR and respective early CE-CCT findings, an 89% agreement was achieved. Conclusions: DL on early CE-CCT acquisition may allow detection of LV sectors affected with myocardial fibrosis, thus without additional contrast-agent administration or radiational dose. Such tool might reduce the user interaction and visual inspection with benefit in both efforts and time.

8.
Expert Rev Med Devices ; 20(6): 467-491, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37157833

RESUMO

INTRODUCTION: Artificial intelligence (AI) encompasses a wide range of algorithms with risks when used to support decisions about diagnosis or treatment, so professional and regulatory bodies are recommending how they should be managed. AREAS COVERED: AI systems may qualify as standalone medical device software (MDSW) or be embedded within a medical device. Within the European Union (EU) AI software must undergo a conformity assessment procedure to be approved as a medical device. The draft EU Regulation on AI proposes rules that will apply across industry sectors, while for devices the Medical Device Regulation also applies. In the CORE-MD project (Coordinating Research and Evidence for Medical Devices), we have surveyed definitions and summarize initiatives made by professional consensus groups, regulators, and standardization bodies. EXPERT OPINION: The level of clinical evidence required should be determined according to each application and to legal and methodological factors that contribute to risk, including accountability, transparency, and interpretability. EU guidance for MDSW based on international recommendations does not yet describe the clinical evidence needed for medical AI software. Regulators, notified bodies, manufacturers, clinicians and patients would all benefit from common standards for the clinical evaluation of high-risk AI applications and transparency of their evidence and performance.


Assuntos
Inteligência Artificial , Software , Humanos , Algoritmos , União Europeia , Inquéritos e Questionários
9.
J Hypertens ; 41(4): 527-544, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723481

RESUMO

Blood pressure is not a static parameter, but rather undergoes continuous fluctuations over time, as a result of the interaction between environmental and behavioural factors on one side and intrinsic cardiovascular regulatory mechanisms on the other side. Increased blood pressure variability (BPV) may indicate an impaired cardiovascular regulation and may represent a cardiovascular risk factor itself, having been associated with increased all-cause and cardiovascular mortality, stroke, coronary artery disease, heart failure, end-stage renal disease, and dementia incidence. Nonetheless, BPV was considered only a research issue in previous hypertension management guidelines, because the available evidence on its clinical relevance presents several gaps and is based on heterogeneous studies with limited standardization of methods for BPV assessment. The aim of this position paper, with contributions from members of the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability and from a number of international experts, is to summarize the available evidence in the field of BPV assessment methodology and clinical applications and to provide practical indications on how to measure and interpret BPV in research and clinical settings based on currently available data. Pending issues and clinical and methodological recommendations supported by available evidence are also reported. The information provided by this paper should contribute to a better standardization of future studies on BPV, but should also provide clinicians with some indications on how BPV can be managed based on currently available data.


Assuntos
Doença da Artéria Coronariana , Hipertensão , Humanos , Pressão Sanguínea , Relevância Clínica , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/complicações , Determinação da Pressão Arterial , Doença da Artéria Coronariana/complicações , Monitorização Ambulatorial da Pressão Arterial
10.
Ther Innov Regul Sci ; 57(3): 589-602, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36652105

RESUMO

INTRODUCTION: The EU Medical Device Regulation 2017/745 defines new rules for the certification and post-market surveillance of medical devices (MD), including an additional review by Expert Panels of clinical evaluation data for high-risk MD if reports and alerts suggest possibly associated increased risks. Within the EU-funded CORE-MD project, our aim was to develop a tool to support such process in which web-accessible safety notices (SN) are automatically retrieved and aggregated based on their specific MD categories and the European Medical Device Nomenclature (EMDN) classification by applying an Entity Resolution (ER) approach to enrich data integrating different sources. The performance of such approach was tested through a pilot study on the Italian data. METHODS: Information relevant to 7622 SN from 2009 to 2021 was retrieved from the Italian Ministry of Health website by Web scraping. For incomplete EMDN data (68%), the MD best match was searched within a list of about 1.5 M MD on the Italian market, using Natural Language Processing techniques and pairwise ER. The performance of this approach was tested on the 2440 SN (32%) already provided with the EMDN code as reference standard. RESULTS: The implemented ER method was able to correctly assign the correct manufacturer to the MD in each SN in 99% of the cases. Moreover, the correct EMDN code at level 1 was assigned in 2382 SN (97.62%), at level 2 in 2366 SN (96.97%) and at level 3 in 2329 SN (95.45%). CONCLUSION: The proposed approach was able to cope with the incompleteness of the publicly available data in the SN. In this way, grouping of SN relevant to a specific MD category/group/type could be used as possible sentinel for increased rates in reported serious incidents in high-risk MD.


Assuntos
Projetos Piloto , Itália
11.
Comput Biol Med ; 153: 106484, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584604

RESUMO

BACKGROUND AND OBJECTIVE: In patients with suspected Coronary Artery Disease (CAD), the severity of stenosis needs to be assessed for precise clinical management. An automatic deep learning-based algorithm to classify coronary stenosis lesions according to the Coronary Artery Disease Reporting and Data System (CAD-RADS) in multiplanar reconstruction images acquired with Coronary Computed Tomography Angiography (CCTA) is proposed. METHODS: In this retrospective study, 288 patients with suspected CAD who underwent CCTA scans were included. To model long-range semantic information, which is needed to identify and classify stenosis with challenging appearance, we adopted a token-mixer architecture (ConvMixer), which can learn structural relationship over the whole coronary artery. ConvMixer consists of a patch embedding layer followed by repeated convolutional blocks to enable the algorithm to learn long-range dependences between pixels. To visually assess ConvMixer performance, Gradient-Weighted Class Activation Mapping (Grad-CAM) analysis was used. RESULTS: Experimental results using 5-fold cross-validation showed that our ConvMixer can classify significant coronary artery stenosis (i.e., stenosis with luminal narrowing ≥50%) with accuracy and sensitivity of 87% and 90%, respectively. For CAD-RADS 0 vs. 1-2 vs. 3-4 vs. 5 classification, ConvMixer achieved accuracy and sensitivity of 72% and 75%, respectively. Additional experiments showed that ConvMixer achieved a better trade-off between performance and complexity compared to pyramid-shaped convolutional neural networks. CONCLUSIONS: Our algorithm might provide clinicians with decision support, potentially reducing the interobserver variability for coronary artery stenosis evaluation.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Humanos , Estudos Retrospectivos , Constrição Patológica , Angiografia Coronária/métodos , Estenose Coronária/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/métodos , Valor Preditivo dos Testes
12.
Eur J Prev Cardiol ; 30(1): 48-60, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073370

RESUMO

Hypertension is the most common and preventable risk factor for cardiovascular disease (CVD), accounting for 20% of deaths worldwide. However, 2/3 of people with hypertension are undiagnosed, untreated, or under treated. A multi-pronged approach is needed to improve hypertension management. Elevated blood pressure (BP) in childhood is a predictor of hypertension and CVD in adulthood; therefore, screening and education programmes should start early and continue throughout the lifespan. Home BP monitoring can be used to engage patients and improve BP control rates. Progress in imaging technology allows for the detection of preclinical disease, which may help identify patients who are at greatest risk of CV events. There is a need to optimize the use of current BP control strategies including lifestyle modifications, antihypertensive agents, and devices. Reducing the complexity of pharmacological therapy using single-pill combinations can improve patient adherence and BP control and may reduce physician inertia. Other strategies that can improve patient adherence include education and reassurance to address misconceptions, engaging patients in management decisions, and using digital tools. Strategies to improve physician therapeutic inertia, such as reminders, education, physician-peer visits, and task-sharing may improve BP control rates. Digital health technologies, such as telemonitoring, wearables, and other mobile health platforms, are becoming frequently adopted tools in hypertension management, particularly those that have undergone regulatory approval. Finally, to fight the consequences of hypertension on a global scale, healthcare system approaches to cardiovascular risk factor management are needed. Government policies should promote routine BP screening, salt-, sugar-, and alcohol reduction programmes, encourage physical activity, and target obesity control.


Assuntos
Hipertensão , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Anti-Hipertensivos/uso terapêutico , Cooperação do Paciente , Estilo de Vida , Monitorização Ambulatorial da Pressão Arterial , Pressão Sanguínea
13.
J Cardiovasc Magn Reson ; 24(1): 62, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36437452

RESUMO

BACKGROUND: Segmentation of cardiovascular magnetic resonance (CMR) images is an essential step for evaluating dimensional and functional ventricular parameters as ejection fraction (EF) but may be limited by artifacts, which represent the major challenge to automatically derive clinical information. The aim of this study is to investigate the accuracy of a deep learning (DL) approach for automatic segmentation of cardiac structures from CMR images characterized by magnetic susceptibility artifact in patient with cardiac implanted electronic devices (CIED). METHODS: In this retrospective study, 230 patients (100 with CIED) who underwent clinically indicated CMR were used to developed and test a DL model. A novel convolutional neural network was proposed to extract the left ventricle (LV) and right (RV) ventricle endocardium and LV epicardium. In order to perform a successful segmentation, it is important the network learns to identify salient image regions even during local magnetic field inhomogeneities. The proposed network takes advantage from a spatial attention module to selectively process the most relevant information and focus on the structures of interest. To improve segmentation, especially for images with artifacts, multiple loss functions were minimized in unison. Segmentation results were assessed against manual tracings and commercial CMR analysis software cvi42(Circle Cardiovascular Imaging, Calgary, Alberta, Canada). An external dataset of 56 patients with CIED was used to assess model generalizability. RESULTS: In the internal datasets, on image with artifacts, the median Dice coefficients for end-diastolic LV cavity, LV myocardium and RV cavity, were 0.93, 0.77 and 0.87 and 0.91, 0.82, and 0.83 in end-systole, respectively. The proposed method reached higher segmentation accuracy than commercial software, with performance comparable to expert inter-observer variability (bias ± 95%LoA): LVEF 1 ± 8% vs 3 ± 9%, RVEF - 2 ± 15% vs 3 ± 21%. In the external cohort, EF well correlated with manual tracing (intraclass correlation coefficient: LVEF 0.98, RVEF 0.93). The automatic approach was significant faster than manual segmentation in providing cardiac parameters (approximately 1.5 s vs 450 s). CONCLUSIONS: Experimental results show that the proposed method reached promising performance in cardiac segmentation from CMR images with susceptibility artifacts and alleviates time consuming expert physician contour segmentation.


Assuntos
Artefatos , Inteligência Artificial , Humanos , Estudos Retrospectivos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos , Atenção
14.
Front Physiol ; 13: 944587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277205

RESUMO

Microgravity has deleterious effects on the cardiovascular system. We evaluated some parameters of blood flow and vascular stiffness during 60 days of simulated microgravity in head-down tilt (HDT) bed rest. We also tested the hypothesis that daily exposure to 30 min of artificial gravity (1 g) would mitigate these adaptations. 24 healthy subjects (8 women) were evenly distributed in three groups: continuous artificial gravity, intermittent artificial gravity, or control. 4D flow cardiac MRI was acquired in horizontal position before (-9 days), during (5, 21, and 56 days), and after (+4 days) the HDT period. The false discovery rate was set at 0.05. The results are presented as median (first quartile; third quartile). No group or group × time differences were observed so the groups were combined. At the end of the HDT phase, we reported a decrease in the stroke volume allocated to the lower body (-30% [-35%; -22%]) and the upper body (-20% [-30%; +11%]), but in different proportions, reflected by an increased share of blood flow towards the upper body. The aortic pulse wave velocity increased (+16% [+9%; +25%]), and so did other markers of arterial stiffness ( C A V I ; C A V I 0 ). In males, the time-averaged wall shear stress decreased (-13% [-17%; -5%]) and the relative residence time increased (+14% [+5%; +21%]), while these changes were not observed among females. Most of these parameters tended to or returned to baseline after 4 days of recovery. The effects of the artificial gravity countermeasure were not visible. We recommend increasing the load factor, the time of exposure, or combining it with physical exercise. The changes in blood flow confirmed the different adaptations occurring in the upper and lower body, with a larger share of blood volume dedicated to the upper body during (simulated) microgravity. The aorta appeared stiffer during the HDT phase, however all the changes remained subclinical and probably the sole consequence of reversible functional changes caused by reduced blood flow. Interestingly, some wall shear stress markers were more stable in females than in males. No permanent cardiovascular adaptations following 60 days of HDT bed rest were observed.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35897382

RESUMO

The pandemic of COVID-19 has posed unprecedented threats to healthcare systems worldwide. Great efforts were spent to fight the emergency, with the widespread use of cutting-edge technologies, especially big data analytics and AI. In this context, the present study proposes a novel combination of geographical filtering and machine learning (ML) for the development and optimization of a COVID-19 early alert system based on Emergency Medical Services (EMS) data, for the anticipated identification of outbreaks with very high granularity, up to single municipalities. The model, implemented for the region of Lombardy, Italy, showed robust performance, with an overall 80% accuracy in identifying the active spread of the disease. The further post-processing of the output was implemented to classify the territory into five risk classes, resulting in effectively anticipating the demand for interventions by EMS. This model shows state-of-art potentiality for future applications in the early detection of the burden of the impact of COVID-19, or other similar epidemics, on the healthcare system.


Assuntos
COVID-19 , Serviços Médicos de Emergência , COVID-19/diagnóstico , COVID-19/epidemiologia , Surtos de Doenças , Humanos , Aprendizado de Máquina , Pandemias/prevenção & controle
16.
Front Cardiovasc Med ; 9: 958212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898281

RESUMO

Background: Novel smartwatch-based cuffless blood pressure (BP) measuring devices are coming to market and receive FDA and CE labels. These devices are often insufficiently validated for clinical use. This study aims to investigate a recently CE-cleared smartwatch using cuffless BP measurement in a population with normotensive and hypertensive individuals scheduled for 24-h BP measurement. Methods: Patients that were scheduled for 24-h ambulatory blood pressure monitoring (ABPM) were recruited and received an additional Samsung Galaxy Watch Active 2 smartwatch for simultaneous BP measurement on their opposite arm. After calibration, patients were asked to measure as much as possible in a 24-h period. Manual activation of the smartwatch is necessary to measure the BP. Accuracy was calculated using sensitivity, specificity, positive and negative predictive values and ROC curves. Bland-Altman method and Taffé methods were used for bias and precision assessment. BP variability was calculated using average real variability, standard deviation and coefficient of variation. Results: Forty patients were included. Bland-Altman and Taffé methods demonstrated a proportional bias, in which low systolic BPs are overestimated, and high BPs are underestimated. Diastolic BPs were all overestimated, with increasing bias toward lower BPs. Sensitivity and specificity for detecting systolic and/or diastolic hypertension were 83 and 41%, respectively. ROC curves demonstrate an area under the curve (AUC) of 0.78 for systolic hypertension and of 0.93 for diastolic hypertension. BP variability was systematically higher in the ABPM measurements compared to the smartwatch measurements. Conclusion: This study demonstrates that the BP measurements by the Samsung Galaxy Watch Active 2 show a systematic bias toward a calibration point, overestimating low BPs and underestimating high BPs, when investigated in both normotensive and hypertensive patients. Standards for traditional non-invasive sphygmomanometers are not met, but these standards are not fully applicable to cuffless devices, emphasizing the urgent need for new standards for cuffless devices. The smartwatch-based BP measurement is not yet ready for clinical usage. Future studies are needed to further validate wearable devices, and also to demonstrate new possibilities of non-invasive, high-frequency BP monitoring.

17.
Front Public Health ; 10: 876625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844841

RESUMO

The aging of the population, the burden of chronic diseases, possible new pandemics are among the challenges for healthcare in the XXI century. To face them, technological innovations and the national recovery and resilience plan within the European Union can represent opportunities to implement changes and renovate the current healthcare system in Italy, in an effort to guarantee equal access to health services. Considering such scenario, a panel of Italian experts gathered in a multidisciplinary Think Tank to discuss possible design of concepts at the basis of a new healthcare system. These ideas were summarized in a manifesto with six drivers for change: vision, governance, competence, intelligence, humanity and relationship. Each driver was linked to an action to actively move toward a new healthcare system based on trust between science, citizens and institutions.


Assuntos
Atenção à Saúde , Pandemias , União Europeia , Serviços de Saúde , Confiança
18.
Clin Imaging ; 89: 68-77, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35732080

RESUMO

The aim of this study was to assess the relationship between left ventricular (LV) regional myocardial wall motion abnormality (WMA), revealed by visual interpretation of cardiac magnetic resonance (CMR) cine images together with the computed wall motion parametric image, and the transmural scar extent, as assessed by Late gadolinium Enhancement (LGE), in 40 patients. Each cine CMR short-axis loop was processed to compute a parametric image where each pixel represents the amplitude of the Hilbert transform of videointensity over time. Two expert radiologists blindly interpreted the cine CMR images in combination with the corresponding parametric image to assign a WMA score for each of the 16 myocardial sectors in which the LV myocardium was subdivided. Such score was compared per sector to the level of transmural scar extent obtained by LGE images. A total of 592 myocardial segments were analyzed. A significant decrease in regional wall motion was observed in sectors with LGE transmural hyperenhancement > 75% of tissue, as well as a correlation between parametric image amplitude and peak radial and circumferential strain, computed by feature tracking. The results showed a reduction in prediction error Lambda of WMA from LGE of 65%, and of LGE from WMA of 63%. In particular, the estimated probability of correct prediction of WMA from LGE was 76%, while that of LGE from WMA was 75%. The interpretation of myocardial viability by LGE images combined with the WMA information, derived from cine CMR and parametric images, could improve the clinical decision making process.


Assuntos
Gadolínio , Imagem Cinética por Ressonância Magnética , Cicatriz , Meios de Contraste , Coração , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio/patologia , Valor Preditivo dos Testes
20.
Comput Methods Programs Biomed ; 219: 106753, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338885

RESUMO

BACKGROUND: Thanks to the increased interest towards health and lifestyle, a larger adoption in wearable devices for activity tracking is present among the general population. Wearable devices such as smart wristbands integrate inertial units, including accelerometers and gyroscopes, which can be utilised to perform automatic classification of hand gestures. This technology could also find an important application in automatic medication adherence monitoring. Accordingly, this study aims at comparing the performance of several Machine-Learning (ML) and Deep-Learning (DL) approaches for the automatic identification of hand gestures, with a specific focus on the drinking gesture, commonly associated to the action of oral intake of a pill-packed medication. METHODS: A method to automatically recognize hand gestures in daily living is proposed in this work. The method relies on a commercially available wristband sensor (MetaMotionR, MbientLab Inc.) integrating tri-axial accelerometer and gyroscope. Both ML and DL algorithms were evaluated for both multi-gesture (drinking, eating, pouring water, opening a bottle, typing, answering a phone, combing hair, and cutting) and binary gesture (drinking versus other gestures) classification from wristband sensor signals. Twenty-two participants were involved in the experimental analysis, performing a 10 min acquisition in a laboratory setting. Leave-one-subject-out cross validation was performed for robust performance assessment. RESULTS: The highest performance was achieved using a convolutional neural network with long- short term memory (CNN-LSTM), with a median f1-score of 90.5 [first quartile: 84.5; third quartile: 92.5]% and 92.5 [81.5;98.0]% for multi-gesture and binary classification, respectively. CONCLUSIONS: Experimental results showed that hand gesture classification with ML/DL from wrist accelerometers and gyroscopes signals can be performed with reasonable accuracy in laboratory settings, paving the way for a new generation of medical devices for monitoring medical adherence.


Assuntos
Gestos , Dispositivos Eletrônicos Vestíveis , Algoritmos , Mãos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...