Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 273: 116119, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382347

RESUMO

Heavy metals are released into the environment in increasing amounts from different natural and anthropogenic sources. Among them, cadmium contaminates aquatic habitats and represents a threat to Amphibians. To assess the risks of exposure to cadmium in the aquatic environment, we studied the survival rate of early tadpoles of Xenopus laevis under exposure to CdCl2 for 6 days in the concentration range between 0.15 and 150 µM of Cd2+. Tadpoles survived and reached stage 45 before feeding at all concentrations tested except 150 µM Cd2+, which significantly induced death. With an exposure of 15 µM Cd2+, tadpoles' mean body length decreased, heart rate increased, fastest swimming speed decreased, and distance traveled was greater compared to unexposed controls. Additionally, a witness of neuronal normal development, the neural cell adhesion molecules (NCAM) expression, was decreased. Moreover, this cell-surface glycoprotein exhibited higher polysialylation, a post-translational modification capable to reduce cell adhesion properties and to affect organ development. Our study highlights the effects of Cd2+ on a series of parameters including morphology, physiology, and behavior. They emphasize the deregulation of molecular NCAM suggesting this effector is an interesting biomarker to detect cadmic toxicity in early tadpoles.

2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834037

RESUMO

Topoisomerases are interesting targets in cancer chemotherapy. Here, we describe the design and synthesis of a novel copper(II) indenoisoquinoline complex, WN198. The new organometallic compound exhibits a cytotoxic effect on five adenocarcinoma cell lines (MCF-7, MDA-MB-231, HeLa, HT-29, and DU-145) with the lowest IC50 (0.37 ± 0.04 µM) for the triple-negative MDA-MB-231 breast cancer cell line. Below 5 µM, WN198 was ineffective on non-tumorigenic epithelial breast MCF-10A cells and Xenopus oocyte G2/M transition or embryonic development. Moreover, cancer cell lines showed autophagy markers including Beclin-1 accumulation and LC3-II formation. The DNA interaction of this new compound was evaluated and the dose-dependent topoisomerase I activity starting at 1 µM was confirmed using in vitro tests and has intercalation properties into DNA shown by melting curves and fluorescence measurements. Molecular modeling showed that the main interaction occurs with the aromatic ring but copper stabilizes the molecule before binding and so can putatively increase the potency as well. In this way, copper-derived indenoisoquinoline topoisomerase I inhibitor WN198 is a promising antitumorigenic agent for the development of future DNA-damaging treatments.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Cobre/farmacologia , Proliferação de Células , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/química , DNA/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Apoptose
3.
J Biol Chem ; 299(8): 104950, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354972

RESUMO

Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin ß1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin ß1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.


Assuntos
Fator de Crescimento Epidérmico , Integrina beta1 , Oócitos , Xenopus laevis , Animais , Acilação , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Proteína Adaptadora GRB7/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Meiose , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo
4.
Front Cell Dev Biol ; 10: 982931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340022

RESUMO

Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.

5.
Open Biol ; 12(8): 220015, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35920043

RESUMO

Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.


Assuntos
Proteínas de Repetições Ricas em Leucina , Plasmodium berghei , Animais , Oocistos/metabolismo , Fosforilação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
6.
Front Oncol ; 12: 837373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280788

RESUMO

Topoisomerases, targets of inhibitors used in chemotherapy, induce DNA breaks accumulation leading to cancer cell death. A newly synthesized copper(II) indenoisoquinoline complex WN197 exhibits a cytotoxic effect below 0.5 µM, on MDA-MB-231, HeLa, and HT-29 cells. At low doses, WN197 inhibits topoisomerase I. At higher doses, it inhibits topoisomerase IIα and IIß, and displays DNA intercalation properties. DNA damage is detected by the presence of γH2AX. The activation of the DNA Damage Response (DDR) occurs through the phosphorylation of ATM/ATR, Chk1/2 kinases, and the increase of p21, a p53 target. WN197 induces a G2 phase arrest characterized by the unphosphorylated form of histone H3, the accumulation of phosphorylated Cdk1, and an association of Cdc25C with 14.3.3. Cancer cells die by autophagy with Beclin-1 accumulation, LC3-II formation, p62 degradation, and RAPTOR phosphorylation in the mTOR complex. Finally, WN197 by inhibiting topoisomerase I at low concentration with high efficiency is a promising agent for the development of future DNA damaging chemotherapies.

7.
PLoS Negl Trop Dis ; 15(11): e0009503, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843489

RESUMO

BACKGROUND: Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential. Protein partners of SmHDAC8 were previously identified by yeast two-hybrid (Y2H) cDNA library screening and by mass spectrometry (MS) analysis. Among these partners we characterized SmRho1, the schistosome orthologue of human RhoA GTPase, which is involved in the regulation of the cytoskeleton. In this work, we validated the interaction between SmHDAC8 and SmRho1 and explored the role of the lysine deacetylase in cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: We characterized two isoforms of SmRho1, SmRho1.1 and SmRho1.2. Co- immunoprecipitation (Co-IP)/Mass Spectrometry (MS) analysis identified SmRho1 partner proteins and we used two heterologous expression systems (Y2H assay and Xenopus laevis oocytes) to study interactions between SmHDAC8 and SmRho1 isoforms. To confirm SmHDAC8 and SmRho1 interaction in adult worms and schistosomula, we performed Co-IP experiments and additionally demonstrated SmRho1 acetylation using a Nano LC-MS/MS approach. A major impact of SmHDAC8 in cytoskeleton organization was documented by treating adult worms and schistosomula with a selective SmHDAC8 inhibitor or using RNAi followed by confocal microscopy. CONCLUSIONS/SIGNIFICANCE: Our results suggest that SmHDAC8 is involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform. The SmRho1.2 isoform failed to interact with SmHDAC8, but did specifically interact with SmDia suggesting the existence of two distinct signaling pathways regulating S. mansoni cytoskeleton organization via the two SmRho1 isoforms. A specific interaction between SmHDAC8 and the C-terminal moiety of SmRho1.1 was demonstrated, and we showed that SmRho1 is acetylated on K136. SmHDAC8 inhibition or knockdown using RNAi caused extensive disruption of schistosomula actin cytoskeleton.


Assuntos
GTP Fosfo-Hidrolases/química , Histona Desacetilases/química , Schistosoma mansoni/metabolismo , Proteína rhoA de Ligação ao GTP/química , Acetilação , Animais , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oócitos , Interferência de RNA , Schistosoma mansoni/genética , Espectrometria de Massas em Tandem , Xenopus laevis , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
FEBS Lett ; 595(21): 2655-2664, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551132

RESUMO

The high-affinity tyrosine kinase receptor MET plays a pivotal role in several facets of cell regulation. Although its mitogenic effect is well documented, some aspects of connection patterns between signaling pathways involved in cell cycle progression remain to be deciphered. We have used a tractable heterologous expression system, the Xenopus oocyte, to detect connections between distinct MET signaling cascades involved in G2/M progression. Our results reveal that Src acts as an adapter via its SH2 domain to recruit 3-phosphoinositide-dependent protein kinase 1 (PDK1) to the MET signaling complex leading to Akt phosphorylation. These data define an original crosstalk between Src and Akt signaling pathways that contributes to MET-induced entry into the M phase, and deserves further investigation in pathologies harboring deregulation of this receptor.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Ciclo Celular , Humanos , Fosforilação
9.
Cancers (Basel) ; 13(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34359720

RESUMO

Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.

10.
Neurobiol Dis ; 157: 105426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144124

RESUMO

LRRK2 is a highly phosphorylated multidomain protein and mutations in the gene encoding LRRK2 are a major genetic determinant of Parkinson's disease (PD). Dephosphorylation at LRRK2's S910/S935/S955/S973 phosphosite cluster is observed in several conditions including in sporadic PD brain, in several disease mutant forms of LRRK2 and after pharmacological LRRK2 kinase inhibition. However, the mechanism of LRRK2 dephosphorylation is poorly understood. We performed a phosphatome-wide reverse genetics screen to identify phosphatases involved in the dephosphorylation of the LRRK2 phosphosite S935. Candidate phosphatases selected from the primary screen were tested in mammalian cells, Xenopus oocytes and in vitro. Effects of PP2A on endogenous LRRK2 phosphorylation were examined via expression modulation with CRISPR/dCas9. Our screening revealed LRRK2 phosphorylation regulators linked to the PP1 and PP2A holoenzyme complexes as well as CDC25 phosphatases. We showed that dephosphorylation induced by different kinase inhibitor triggered relocalisation of phosphatases PP1 and PP2A in LRRK2 subcellular compartments in HEK-293 T cells. We also demonstrated that LRRK2 is an authentic substrate of PP2A both in vitro and in Xenopus oocytes. We singled out the PP2A holoenzyme PPP2CA:PPP2R2 as a powerful phosphoregulator of pS935-LRRK2. Furthermore, we demonstrated that this specific PP2A holoenzyme induces LRRK2 relocalization and triggers LRRK2 ubiquitination, suggesting its involvement in LRRK2 clearance. The identification of the PPP2CA:PPP2R2 complex regulating LRRK2 S910/S935/S955/S973 phosphorylation paves the way for studies refining PD therapeutic strategies that impact LRRK2 phosphorylation.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Células HEK293 , Holoenzimas/metabolismo , Humanos , Técnicas In Vitro , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas de Xenopus/metabolismo , Xenopus laevis
11.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008450

RESUMO

Aluminium (Al) is the most common natural metallic element in the Earth's crust. It is released into the environment through natural processes and human activities and accumulates in aquatic environments. This review compiles scientific data on the neurotoxicity of aluminium contamination on the nervous system of aquatic organisms. More precisely, it helps identify biomarkers of aluminium exposure for aquatic environment biomonitoring in freshwater aquatic vertebrates. Al is neurotoxic and accumulates in the nervous system of aquatic vertebrates, which is why it could be responsible for oxidative stress. In addition, it activates and inhibits antioxidant enzymes and leads to changes in acetylcholinesterase activity, neurotransmitter levels, and in the expression of several neural genes and nerve cell components. It also causes histological changes in nerve tissue, modifications of organism behaviour, and cognitive deficit. However, impacts of aluminium exposure on the early stages of aquatic vertebrate development are poorly described. Lastly, this review also poses the question of how accurate aquatic vertebrates (fishes and amphibians) could be used as model organisms to complement biological data relating to the developmental aspect. This "challenge" is very relevant since freshwater pollution with heavy metals has increased in the last few decades.


Assuntos
Alumínio/efeitos adversos , Organismos Aquáticos/efeitos dos fármacos , Poluição Ambiental/efeitos adversos , Sistema Nervoso/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Animais , Água Doce/química , Humanos , Vertebrados/fisiologia
12.
Cancers (Basel) ; 12(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027952

RESUMO

Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.

13.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357477

RESUMO

Xenopus oocytes were used as cellular and molecular sentinels to assess the effects of a new class of organometallic compounds called ferrocenyl dihydroquinolines that have been developed as potential anti-cancer agents. One ferrocenyl dihydroquinoline compound exerted deleterious effects on oocyte survival after 48 h of incubation at 100 µM. Two ferrocenyl dihydroquinoline compounds had an inhibitory effect on the resumption of progesterone induced oocyte meiosis, compared to controls without ferrocenyl groups. In these inhibited oocytes, no MPF (Cdk1/cyclin B) activity was detected by western blot analysis as shown by the lack of phosphorylation of histone H3. The dephosphorylation of the inhibitory Y15 residue of Cdk1 occurred but cyclin B was degraded. Moreover, two apoptotic death markers, the active caspase 3 and the phosphorylated histone H2, were detected. Only 7-chloro-1-ferrocenylmethyl-4-(phenylylimino)-1,4-dihydroquinoline (8) did not show any toxicity and allowed the assembly of a histologically normal metaphase II meiotic spindle while inhibiting the proliferation of cancer cell lines with a low IC50, suggesting that this compound appears suitable as an antimitotic agent.


Assuntos
Compostos Ferrosos/farmacologia , Oócitos/fisiologia , Progesterona/farmacologia , Quinolinas/farmacologia , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B/metabolismo , Feminino , Compostos Ferrosos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Histonas/metabolismo , Humanos , Prófase Meiótica I , Estrutura Molecular , Oócitos/efeitos dos fármacos , Fosforilação , Quinolinas/química , Xenopus laevis/metabolismo
14.
Cells ; 9(1)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963573

RESUMO

The role of hydrogen sulfide (H2S) is addressed in Xenopuslaevis oocytes. Three enzymes involved in H2S metabolism, cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Fator Promotor de Maturação/metabolismo , Meiose/efeitos dos fármacos , Oócitos/metabolismo , Sulfetos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclina B/metabolismo , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Citoplasma/metabolismo , Feminino , Prófase Meiótica I/efeitos dos fármacos , Metáfase/efeitos dos fármacos , Oócitos/química , Oócitos/enzimologia , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfetos/metabolismo , Sulfurtransferases/antagonistas & inibidores , Sulfurtransferases/metabolismo , Superóxido Dismutase/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Fosfatases cdc25/metabolismo
15.
Angew Chem Int Ed Engl ; 59(17): 6720-6723, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31872568

RESUMO

Receptor tyrosine kinases (RTKs) are key regulators of cellular functions in metazoans. In vertebrates, RTKs are mostly activated by polypeptides but are not naturally sensitive to amino acids or light. Taking inspiration from Venus kinase receptors (VKRs), an atypical family of RTKs found in nature, we have transformed the human insulin (hIR) and hepatocyte growth factor receptor (hMET) into glutamate receptors by replacing their extracellular binding domains with the ligand-binding domain of metabotropic glutamate receptor type 2 (mGluR2). We then imparted light sensitivity through covalent attachment of a synthetic glutamate-based photoswitch via a self-labelling SNAP tag. By employing a Xenopus laevis oocyte kinase activity assay, we demonstrate how these chimeric RTKs, termed light-controlled human insulin receptor (LihIR) and light-controlled human MET receptor (LihMET), can be used to exert optical control over the insulin or MET signaling pathways. Our results outline a potentially general strategy to convert RTKs into photoreceptors.


Assuntos
Luz , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor de Insulina/metabolismo , Receptores de Glutamato/metabolismo , Animais , Biotransformação , Humanos , Transdução de Sinais , Xenopus laevis
16.
Sci Rep ; 9(1): 8120, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148576

RESUMO

Pseudokinases play key roles in many biological processes but they are poorly understood compared to active kinases. Eight putative pseudokinases have been predicted in Plasmodium species. We selected the unique pseudokinase belonging to tyrosine kinase like (TKL) family for detailed structural and functional analysis in P. falciparum and P. berghei. The primary structure of PfpTKL lacks residues critical for kinase activity, supporting its annotation as a pseudokinase. The recombinant pTKL pseudokinase domain was able to bind ATP, but lacked catalytic activity as predicted. The sterile alpha motif (SAM) and RVxF motifs of PfpTKL were found to interact with the P. falciparum proteins serine repeat antigen 5 (SERA5) and protein phosphatase type 1 (PP1) respectively, suggesting that pTKL has a scaffolding role. Furthermore, we found that PP1c activity in a heterologous model was modulated in an RVxF-dependent manner. During the trophozoite stages, PbpTKL was exported to infected erythrocytes where it formed complexes with proteins involved in cytoskeletal organization or host cell maturation and homeostasis. Finally, genetic analysis demonstrated that viable strains obtained by genomic deletion or knocking down PbpTKL did not affect the course of parasite intra-erythrocytic development or gametocyte emergence, indicating functional redundancy during these parasite stages.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Plasmodium/enzimologia , Proteína Fosfatase 1/metabolismo , Proteínas Tirosina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Animais , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Deleção de Genes , Humanos , Hidrólise , Camundongos , Estrutura Molecular , Filogenia , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Transgenes , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis
17.
Sci Rep ; 9(1): 3615, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837655

RESUMO

Vector-borne diseases and especially malaria are responsible for more than half million deaths annually. The increase of insecticide resistance in wild populations of Anopheles malaria vectors emphasises the need for novel vector control strategies as well as for identifying novel vector targets. Venus kinase receptors (VKRs) constitute a Receptor Tyrosine Kinase (RTK) family only found in invertebrates. In this study we functionally characterized Anopheles VKR in the Gambiae complex member, Anopheles coluzzii. Results showed that Anopheles VKR can be activated by L-amino acids, with L-arginine as the most potent agonist. VKR was not required for the fecundity of A. coluzzii, in contrast to reports from other insects, but VKR function is required in both Anopheles males and females for development of larval progeny. Anopheles VKR function is also required for protection against infection by Plasmodium parasites, thus identifying a novel linkage between reproduction and immunity in Anopheles. The insect specificity of VKRs as well as the essential function for reproduction and immunity suggest that Anopheles VKR could be a potentially druggable target for novel vector control strategies.


Assuntos
Anopheles/crescimento & desenvolvimento , Anopheles/imunologia , Larva/crescimento & desenvolvimento , Larva/imunologia , Malária/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Anopheles/enzimologia , Anopheles/parasitologia , Feminino , Larva/enzimologia , Larva/parasitologia , Malária/parasitologia , Masculino , Mosquitos Vetores , Oócitos/citologia , Oócitos/imunologia , Oócitos/parasitologia , Plasmodium/isolamento & purificação , Receptores Proteína Tirosina Quinases/genética , Xenopus/crescimento & desenvolvimento , Xenopus/imunologia , Xenopus/metabolismo , Xenopus/parasitologia
18.
PLoS Negl Trop Dis ; 13(3): e0006959, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30849083

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) is a lethal zoonosis caused by the metacestode larva of the tapeworm Echinococcus multilocularis. The infection is characterized by tumour-like growth of the metacestode within the host liver, leading to extensive fibrosis and organ-failure. The molecular mechanisms of parasite organ tropism towards the liver and influences of liver cytokines and hormones on parasite development are little studied to date. METHODOLOGY/PRINCIPAL FINDINGS: We show that the E. multilocularis larval stage expresses three members of the fibroblast growth factor (FGF) receptor family with homology to human FGF receptors. Using the Xenopus expression system we demonstrate that all three Echinococcus FGF receptors are activated in response to human acidic and basic FGF, which are present in the liver. In all three cases, activation could be prevented by addition of the tyrosine kinase (TK) inhibitor BIBF 1120, which is used to treat human cancer. At physiological concentrations, acidic and basic FGF significantly stimulated the formation of metacestode vesicles from parasite stem cells in vitro and supported metacestode growth. Furthermore, the parasite's mitogen activated protein kinase signalling system was stimulated upon addition of human FGF. The survival of metacestode vesicles and parasite stem cells were drastically affected in vitro in the presence of BIBF 1120. CONCLUSIONS/SIGNIFICANCE: Our data indicate that mammalian FGF, which is present in the liver and upregulated during fibrosis, supports the establishment of the Echinococcus metacestode during AE by acting on an evolutionarily conserved parasite FGF signalling system. These data are valuable for understanding molecular mechanisms of organ tropism and host-parasite interaction in AE. Furthermore, our data indicate that the parasite's FGF signalling systems are promising targets for the development of novel drugs against AE.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Interações Hospedeiro-Parasita , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Linhagem Celular , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Indóis/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cultura Primária de Células , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas Recombinantes/farmacologia
19.
Front Microbiol ; 9: 2617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429842

RESUMO

With its multiple regulatory partners, the conserved Protein Phosphatase type-1 (PP1) plays a central role in many functions of the biology of eukaryotic cells, including Plasmodium falciparum. Here, we characterized a protein named PfRCC-PIP, as a major partner of PfPP1. We established its direct interaction in vitro and its presence in complex with PfPP1 in the parasite. The use of Xenopus oocyte model revealed that RCC-PIP can interact with the endogenous PP1 and act in synergy with suboptimal doses of progesterone to trigger oocyte maturation, suggesting a regulatory effect on PP1. Reverse genetic studies suggested an essential role for RCC-PIP since no viable knock-out parasites could be obtained. Further, we demonstrated the capacity of protein region containing RCC1 motifs to interact with the parasite kinase CDPK7. These data suggest that this protein is both a kinase and a phosphatase anchoring protein that could provide a platform to regulate phosphorylation/dephosphorylation processes.

20.
Mol Biochem Parasitol ; 213: 22-25, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28159665

RESUMO

In the context of investigating the exceptional reproductive biology of schistosomes, several studies have focused on the identification and characterization of involved molecules. Among these are cellular tyrosine kinases (CTKs) which control differentiation processes in the female gonads. On the way to unravel CTK-mediated signaling processes in more detail, several upstream- and downstream partners of these CTKs were identified. In this context we present here first data characterizing the novel orphan gene Sm opg1. Annotated as hypothetical protein, SmOPG1 was identified as an interaction partner of the CTK SmTK6 by yeast two-hybrid library screening. Y2/3H interaction studies showed that SmTK6 binds with its SH2 domain to a specific binding motif within the C-terminus of SmOPG1. Additionally, in situ-hybridization and organ-specific RT-PCR analyses demonstrated the co-localization of SmOPG1 and SmTK6 transcripts in the gonads of adult S. mansoni. Finally, SmOPG1 knock-down provided first hints for a function in the ovary.


Assuntos
Proteínas de Helminto/análise , Ovário/fisiologia , Schistosoma mansoni/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Proteínas de Helminto/genética , Hibridização In Situ , Ovário/química , Mapeamento de Interação de Proteínas , Proteínas Tirosina Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Schistosoma mansoni/química , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...