Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Aerosol Med Pulm Drug Deliv ; 29(3): 260-72, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26824777

RESUMO

BACKGROUND: Theoretical models suggest that He-O2 as carrier gas may lead to more homogeneous ventilation and aerosol deposition than air. However, these effects have not been clinically consistent and it is unclear why subjects may or may not respond to the therapy. Here we present 3D-imaging data of aerosol deposition and ventilation distributions from subjects with asthma inhaling He-O2 as carrier gas. The data are compared with those that we previously obtained from a similar group of subjects inhaling air. METHODS: Subjects with mild-to-moderate asthma were bronchoconstricted with methacholine and imaged with PET-CT while inhaling aerosol carried with He-O2. Mean-normalized-values of lobar specific ventilation sV* and deposition sD* were derived and the factors affecting the distribution of sD* were evaluated along with the effects of breathing frequency (f) and regional expansion (FVOL). RESULTS: Lobar distributions of sD* and sV* with He-O2 were not statistically different from those previously measured with air. However, with He-O2 there was a larger number of lobes having sV* and sD* closer to unity and, in those subjects with uneven deposition distributions, the correlation of sD* with sV* was on average higher (p < 0.05) in He-O2 (0.84 ± 0.8) compared with air (0.55 ± 0.28). In contrast with air, where the frequency of breathing during nebulization was associated with the degree of sD*-sV* correlation, with He-O2 there was no association. Also, the modulation of f on the correlation between FVOL and sD*/sV* in air, was not observed in He-O2. CONCLUSION: There were no differences in the inter-lobar heterogeneity of sD* or sV* in this group of mild asthmatic subjects breathing He-O2 compared with patients previously breathing air. Future studies, using these personalized 3D data sets as input to CFD models, are needed to understand if, and for whom, breathing He-O2 during aerosol inhalation may be beneficial.


Assuntos
Asma/fisiopatologia , Broncoconstrição , Portadores de Fármacos , Hélio/administração & dosagem , Pulmão/fisiopatologia , Oxigênio/administração & dosagem , Ventilação Pulmonar , Cloreto de Sódio/administração & dosagem , Administração por Inalação , Adolescente , Aerossóis , Asma/diagnóstico por imagem , Asma/metabolismo , Broncoconstritores/administração & dosagem , Feminino , Gases , Humanos , Imageamento Tridimensional , Inalação , Soluções Isotônicas , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Masculino , Cloreto de Metacolina/administração & dosagem , Modelos Biológicos , Nebulizadores e Vaporizadores , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Cloreto de Sódio/farmacocinética , Distribuição Tecidual , Adulto Jovem
2.
J Aerosol Med Pulm Drug Deliv ; 29(1): 57-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25977979

RESUMO

BACKGROUND: A previous PET-CT imaging study of 14 bronchoconstricted asthmatic subjects showed that peripheral aerosol deposition was highly variable among subjects and lobes. The aim of this work was to identify and quantify factors responsible for this variability. METHODS: A theoretical framework was formulated to integrate four factors affecting aerosol deposition: differences in ventilation, in how air vs. aerosol distribute at each bifurcation, in the fraction of aerosol escaping feeding airways, and in the fraction of aerosol reaching the periphery that is exhaled. These factors were quantified in 12 of the subjects using PET-CT measurements of relative specific deposition sD*, relative specific ventilation sV* (measured with dynamic PET or estimated as change in expansion between two static HRCTs), average lobar expansion FVOL, and breathing frequency measured during aerosol inhalation fN. RESULTS: The fraction of the variance of sD* explained by sV* (0.38), by bifurcation effects (0.38), and by differences in deposition along feeding airways (0.31) were similar in magnitude. We could not directly estimate the contribution of aerosol that was exhaled. Differences in expansion did not explain any fraction of the variability in sD* among lobes. The dependence of sD* on sV* was high in subjects breathing with low fN, but weakened among those breathing faster. Finally, sD*/sV* showed positive dependence on FVOL among low fN subjects, while the dependence was negative among high fN subjects. CONCLUSION: The theoretical framework allowed us to analyze experimentally measured aerosol deposition imaging data. When considering bronchoconstricted asthmatic subjects, a dynamic measurement of ventilation is required to evaluate its effect on aerosol transport. The mechanisms behind the identified effects of fN and FVOL on aerosol deposition need further study and may have important implications for aerosol therapy in subjects with heterogeneous ventilation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA