Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235828

RESUMO

Dysbiotic microbiota is often associated with health issues including inflammatory bowel disease or ulcerative colitis. In order to counterbalance host disorder caused by an alteration in the gut composition, numerous studies have focused on identifying new biotherapeutic products (NBPs). Among the promising NBPs is Parabacteroides distasonis, a gut microbiota member part of the core microbiome that recently has received much attention due to the numerous beneficial properties it brings to its host. In this study, the properties linked to the selection of NBPs were screened in 14 unrelated P. distasonis strains, including resistance to gastric conditions, adherence (Caco-2 model), transepithelial resistance (Caco-2 model), and immunomodulation, on nontreated and LPS-stimulated cells (HT-29 and peripheral blood mononuclear cells (PBMCs)). This approach allowed for the identification of five strains that combined almost all the in vitro biotherapeutic properties tested. However, all the P. distasonis strains induced the overproduction of proinflammatory cytokines on PBMCs, which was counteracted by the overproduction of the anti-inflammatory cytokines. Among these five strains, two particularly retained our attention as a potential NBP, by showing strong health-promoting function, the lowest overproduction of proinflammatory cytokines on PBMCs, and no detrimental effect on the host.


Assuntos
Leucócitos Mononucleares , Lipopolissacarídeos , Anti-Inflamatórios/farmacologia , Bacteroidetes , Células CACO-2 , Citocinas , Humanos
2.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012685

RESUMO

The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and potential as a new biotherapeutic product. However, no study has yet investigated the cell surface molecules and structures of P. distasonis that allow its maintenance within the gut microbiota. Moreover, although P. distasonis is strongly recognized as an intestinal commensal species with benefits for its host, several works displayed controversial results, showing it as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-typing classification in order to better understand and characterize the beneficial/pathogenic behavior related to P. distasonis strains. Two different types of fimbriae, three different types of pilus and up to fourteen capsular polysaccharide loci were identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed of P. distasonis adhesion capacities and its potential pathogenicity, but no specific structure related to P. distasonis beneficial or detrimental activity was identified.


Assuntos
Microbioma Gastrointestinal , Bacteroidetes/genética , Fímbrias Bacterianas/genética , Intestinos
3.
Microorganisms ; 9(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34442682

RESUMO

The gut microbiota is a complex and dynamic ecosystem whose balance and homeostasis are essential to the host's well-being and whose composition can be critically affected by various factors, including host stress. Parabacteroides distasonis causes well-known beneficial roles for its host, but is negatively impacted by stress. However, the mechanisms explaining its maintenance in the gut have not yet been explored, in particular its capacities to adhere onto (bio)surfaces, form biofilms and the way its physicochemical surface properties are affected by stressing conditions. In this paper, we reported adhesion and biofilm formation capacities of 14 unrelated strains of P. distasonis using a steam-based washing procedure, and the electrokinetic features of its surface. Results evidenced an important inter-strain variability for all experiments including the response to stress hormones. In fact, stress-induced molecules significantly impact P. distasonis adhesion and biofilm formation capacities in 35% and 23% of assays, respectively. This study not only provides basic data on the adhesion and biofilm formation capacities of P. distasonis to abiotic substrates but also paves the way for further research on how stress-molecules could be implicated in P. distasonis maintenance within the gut microbiota, which is a prerequisite for designing efficient solutions to optimize its survival within gut environment.

4.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114008

RESUMO

During deep-space travels, crewmembers face various physical and psychosocial stressors that could alter gut microbiota composition. Since it is well known that intestinal dysbiosis is involved in the onset or exacerbation of several disorders, the aim of this study was to evaluate changes in intestinal microbiota in a murine model used to mimic chronic psychosocial stressors encountered during a long-term space mission. We demonstrate that 3 weeks of exposure to this model (called CUMS for Chronic Unpredictable Mild Stress) induce significant change in intracaecal ß-diversity characterized by an important increase of the Firmicutes/Bacteroidetes ratio. These alterations are associated with a decrease of Porphyromonadaceae, particularly of the genus Barnesiella, a major member of gut microbiota in mice and humans where it is described as having protective properties. These results raise the question of the impact of stress-induced decrease of beneficial taxa, support recent data deduced from in-flight experimentations and other ground-based models, and emphasize the critical need for further studies exploring the impact of spaceflight on intestinal microbiota in order to propose strategies to countermeasure spaceflight-associated dysbiosis and its consequences on health.


Assuntos
Bactérias/classificação , Disbiose/microbiologia , Voo Espacial/psicologia , Estresse Psicológico/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Estudos de Casos e Controles , Modelos Animais de Doenças , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Filogenia , Análise de Sequência de DNA , Estresse Psicológico/etiologia
5.
Foods ; 8(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627486

RESUMO

Poro cheese is a regional product originally from the area of Los Rios, Tabasco in Mexico. In the context of preserving the heritage of Poro cheese and protecting the specific characteristics that define its typicity through an origin designation, the present study was conducted to establish a general profile of Poro cheese by characterizing their physicochemical, textural, rheological, sensorial and microbiological characteristics. Differences in moisture, proteins, fats, NaCl, titrable acidity, pH, color texture and rheology amongst cheese factories were observed and ranges were established. Fifteen descriptors were generated to provide a descriptive analysis, eight of which were significantly different amongst the factories with no differences in the global acceptability of cheese. The favorite cheese had the highest scores for aroma attributes. Conventional and molecular methods were used to identify the main microorganisms, for which Lactobacillus plantarum, L. fermentum, L. farciminis and L. rhamnosus were the main microorganisms found in Porocheese. The obtained data constituted the parameters for characterizing Poro cheese, which will strongly help to support its origin appellation request process.

6.
Sci Rep ; 9(1): 9410, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253829

RESUMO

During spaceflight, organisms are subjected to various physical stressors including modification of gravity (G) that, associated with lifestyle, could lead to impaired immunity, intestinal dysbiosis and thus potentially predispose astronauts to illness. Whether space travel affects microbiota homeostasis has not been thoroughly investigated. The aim of this study was to evaluate changes in intestinal microbiota and mucosa in a ground-based murine model consisting in a 21-days confinement of mice in a centrifuge running at 2 or 3G. Results revealed an increased α-diversity and a significant change in intracaecal ß-diversity observed only at 3G, with profiles characterized by a decrease of the Firmicutes/Bacteroidetes ratio. Compared to 1G microbiota, 12.1% of the taxa were significantly impacted in 3G microbiota, most of them (78%) being enriched. This study shows a G-level-dependent disruption of intracaecal microbiota, without alteration of mucosal integrity. These first data reinforce those recently obtained with in-flight experimentations or microgravity models, and emphasize the critical need for further studies exploring the impact of spaceflight on intestinal microbiota in order to optimize long-term space travel conditions.


Assuntos
Microbioma Gastrointestinal , Hipergravidade , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Metagenômica , Camundongos , Filogenia , Voo Espacial
7.
Front Microbiol ; 8: 357, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337181

RESUMO

Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium.

8.
Crit Rev Food Sci Nutr ; 57(2): 399-406, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25849292

RESUMO

Branched chain aldehyde, 3-methylbutanal is associated as a key flavor compound with many hard and semi-hard cheese varieties. The presence and impact of this flavor compound in bread, meat, and certain beverages has been recently documented, however its presence and consequences regarding cheese flavor were not clearly reported. This paper gives an overview of the role of 3-methylbutanal in cheese, along with the major metabolic pathways and key enzymes leading to its formation. Moreover, different strategies are highlighted for the control of this particular flavor compound in specific cheese types.


Assuntos
Aldeídos/metabolismo , Proteínas de Bactérias/metabolismo , Queijo/análise , Contaminação de Alimentos/prevenção & controle , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aldeídos/análise , Aldeídos/toxicidade , Carboxiliases/metabolismo , Carnobacterium/enzimologia , Carnobacterium/crescimento & desenvolvimento , Carnobacterium/metabolismo , Queijo/microbiologia , Enterococcus/enzimologia , Enterococcus/crescimento & desenvolvimento , Enterococcus/metabolismo , Qualidade dos Alimentos , Glutamato Desidrogenase/metabolismo , Lactobacillus/enzimologia , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Lactococcus/enzimologia , Lactococcus/crescimento & desenvolvimento , Lactococcus/metabolismo , Controle de Qualidade , Streptococcus/enzimologia , Streptococcus/crescimento & desenvolvimento , Streptococcus/metabolismo , Paladar , Transaminases/metabolismo
9.
Genome Announc ; 4(5)2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27738030

RESUMO

In this study, we present the draft genome sequence of Carnobacterium divergens V41. This strain was previously reported as producing divercin V41, a bacteriocin of interest for food biopreservation. Its genome revealed also the presence of a gene cluster putatively involved in polyketide production, which is unique in lactic acid bacteria.

10.
Food Microbiol ; 58: 79-86, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27217362

RESUMO

The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative genomic analysis revealed that the species C. maltaromaticum exhibits genes related to the Leloir and the tagatose-6-phosphate (Tagatose-6P) pathways. More precisely, strains can bear genes related to one or both pathways and several strains apparently do not contain homologs related to these pathways. Analysis at the population scale revealed that the Tagatose-6P and the Leloir encoding genes are disseminated in multiple phylogenetic lineages of C. maltaromaticum: genes of the Tagatose-6P pathway are present in the lineages I, II and III, and genes of the Leloir pathway are present in the lineages I, III and IV. These data suggest that these genes evolved thanks to horizontal transfer, genetic duplication and translocation. We hypothesize that the lac and gal genes evolved in C. maltaromaticum according to a complex scenario that mirrors the high population diversity.


Assuntos
Carnobacterium/genética , Galactose/metabolismo , Variação Genética , Genômica , Lactose/metabolismo , Leite/metabolismo , Animais , Carnobacterium/metabolismo , Hexosefosfatos , Filogenia , Análise de Sequência de DNA , Sintenia
11.
Microb Biotechnol ; 9(4): 466-77, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26147827

RESUMO

We describe the impact of two propeptides and PedC on the production yield and the potency of recombinant pediocins produced in Lactococcus lactis. On the one hand, the sequences encoding the propeptides SD or LEISSTCDA were inserted between the sequence encoding the signal peptide of Usp45 and the structural gene of the mature pediocin PA-1. On the other hand, the putative thiol-disulfide oxidoreductase PedC was coexpressed with pediocin. The concentration of recombinant pediocins produced in supernatants was determined by enzyme-linked immunosorbent assay. The potency of recombinant pediocins was investigated by measuring the minimal inhibitory concentration by agar well diffusion assay. The results show that propeptides SD or LEISSTCDA lead to an improved secretion of recombinant pediocins with apparently no effect on the antibacterial potency and that PedC increases the potency of recombinant pediocin. To our knowledge, this study reveals for the first time that pediocin tolerates fusions at the N-terminal end. Furthermore, it reveals that only expressing the pediocin structural gene in a heterologous host is not sufficient to get an optimal potency and requires the accessory protein PedC. In addition, it can be speculated that PedC catalyses the correct formation of disulfide bonds in pediocin.


Assuntos
Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Engenharia Metabólica , Pediocinas/genética , Pediocinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ensaio de Imunoadsorção Enzimática , Redes e Vias Metabólicas/genética , Testes de Sensibilidade Microbiana , Pediocinas/análise , Proteínas Recombinantes/análise , Análise de Sequência de DNA
12.
Appl Environ Microbiol ; 80(13): 3920-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747901

RESUMO

Dairy products are colonized with three main classes of lactic acid bacteria (LAB): opportunistic bacteria, traditional starters, and industrial starters. Most of the population structure studies were previously performed with LAB species belonging to these three classes and give interesting knowledge about the population structure of LAB at the stage where they are already industrialized. However, these studies give little information about the population structure of LAB prior their use as an industrial starter. Carnobacterium maltaromaticum is a LAB colonizing diverse environments, including dairy products. Since this bacterium was discovered relatively recently, it is not yet commercialized as an industrial starter, which makes C. maltaromaticum an interesting model for the study of unindustrialized LAB population structure in dairy products. A multilocus sequence typing scheme based on an analysis of fragments of the genes dapE, ddlA, glpQ, ilvE, pyc, pyrE, and leuS was applied to a collection of 47 strains, including 28 strains isolated from dairy products. The scheme allowed detecting 36 sequence types with a discriminatory index of 0.98. The whole population was clustered in four deeply branched lineages, in which the dairy strains were spread. Moreover, the dairy strains could exhibit a high diversity within these lineages, leading to an overall dairy population with a diversity level as high as that of the nondairy population. These results are in agreement with the hypothesis according to which the industrialization of LAB leads to a diversity reduction in dairy products.


Assuntos
Carnobacterium/classificação , Carnobacterium/genética , Laticínios/microbiologia , Variação Genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genes Bacterianos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Análise de Sequência de DNA
13.
Food Microbiol ; 36(2): 223-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010601

RESUMO

Carnobacterium maltaromaticum is a lactic acid bacterium isolated from soft cheese. The objective of this work was to study its potential positive impact when used in cheese technology. Phenotypic and genotypic characterization of six strains of C. maltaromaticum showed that they belong to different phylogenetic groups. Although these strains lacked the ability to coagulate milk quickly, they were acidotolerant. They did not affect the coagulation capacity of starter lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus, used in dairy industry. The impact of C. maltaromaticum LMA 28 on bacterial flora of cheese revealed a significant decrease of Psychrobacter sp. concentration, which might be responsible for cheese aging phenomena. An experimental plan was carried out to unravel the mechanism of inhibition of Psychrobacter sp. and Listeria monocytogenes and possible interaction between various factors (cell concentration, NaCl, pH and incubation time). Cellular concentration of C. maltaromaticum LMA 28 was found to be the main factor involved in the inhibition of Psychrobacter sp. and L. monocytogenes.


Assuntos
Carnobacterium/fisiologia , Queijo/microbiologia , Lactobacillaceae/metabolismo , Leite/microbiologia , Animais , Antibiose , Carnobacterium/classificação , Carnobacterium/genética , Carnobacterium/isolamento & purificação , Fermentação , Microbiologia de Alimentos
14.
Genome Announc ; 1(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23405327

RESUMO

Within the lactic acid bacterium genus Carnobacterium, Carnobacterium maltaromaticum is one of the most frequently isolated species from natural environments and food. It potentially plays a major role in food product biopreservation. We report here on the 3.649-Mb chromosome sequence of C. maltaromaticum LMA 28, which was isolated from ripened soft cheese.

15.
Int J Food Microbiol ; 157(3): 332-9, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22762999

RESUMO

Carnobacterium maltaromaticum strains are widely found in food including fish, meat and some dairy products. Producing a malty/chocolate like aroma due to 3-methylbutanal from the catabolism of leucine is a general characteristic of this species. In this study, we investigated metabolic routes responsible for the biosynthesis of this flavor compound from the catabolism of leucine in C. maltaromaticum LMA 28, a strain isolated from mold ripened soft cheese. Depending on the lactic acid bacterium, leucine can be converted into 3-methylbutanal following two possible metabolic pathways: either directly by α-ketoacid decarboxylase (KADC) pathway or indirectly by α-ketoacid dehydrogenase (KADH) pathway. Both KADC (41.0±3.0 nmol/mg protein/min) and KADH (1.43±0.62 nmol/mg protein/min) activities were detected and determined in vitro in C. maltaromaticum LMA 28. C. maltaromaticum LMA 28 slightly reduced the production of 3-methylbutanal from leucine in the presence of a specific inhibitor of KADH enzyme complex, i.e. sodium meta-arsenite, suggesting that both pathways were involved in vivo in leucine catabolism. Moreover the presence of genes encoding aminotransferase, glutamate dehydrogenase, α-ketoacid decarboxylase, α-ketoacid dehydrogenase and aldehyde dehydrogenase was confirmed. C. maltaromaticum is then the first lactic acid bacterium in which presence of both metabolic routes responsible for the biosynthesis of 3-methylbutanal from leucine catabolism was confirmed in vitro and in vivo as well.


Assuntos
Aldeídos/metabolismo , Carnobacterium/metabolismo , Aromatizantes/metabolismo , Carnobacterium/enzimologia , Carnobacterium/genética , Queijo/microbiologia , Enzimas/metabolismo , Lactobacillaceae/metabolismo , Leucina/metabolismo
16.
Res Microbiol ; 163(5): 323-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22588175

RESUMO

Carnobacteriocin BM1 (Cbn BM1) is a class IIa bacteriocin produced by Carnobacterium maltaromaticum CP5 isolated from a French mold ripened cheese. Numerous studies highlight variations in numerous parameters, such as bacterial membrane composition and potential, according to physiological changes. In this work, the mechanism of action of an oxidized form of Cbn BM1 was studied on C. maltaromaticum DSM20730 in log and stationary growth phases. Membrane integrity assessment and high resolution imaging by atomic force microscopy confirmed the link between physiological state and bacterial sensitivity to Cbn BM1. Indeed, these approaches enable visualizing morphological damage of C. maltaromaticum DSM20730 only in an active dividing state. To specifically address the interaction between peptide and bacterial membrane, fluorescence anisotropy measurements were conducted. Results revealed strong modifications in membrane fluidity by Cbn BM1 only for C. maltaromaticum DSM20730 in log growth phase. In a similar way, the Δψ component, but not the ΔpH component of the proton-motive force, was perturbed only for bacteria in log growth phase. These results clearly show that a class IIa bacteriocin antimicrobial mechanism of action can be modulated by the physiological state of its target bacteria.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Carnobacterium/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Polarização de Fluorescência , Fluidez de Membrana/efeitos dos fármacos , Microscopia de Força Atômica , Força Próton-Motriz/efeitos dos fármacos
17.
Food Microbiol ; 27(5): 573-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20510773

RESUMO

Carnobacterium species constitute a genus of Lactic Acid Bacteria (LAB) present in different ecological niches. The aim of this article is to summarize the knowledge about Carnobacterium maltaromaticum species at different microbiological levels such as taxonomy, isolation and identification, ecology, technological aspects and safety in dairy products. Works published during the last decade concerning C. maltaromaticum have shown that this non-starter LAB (NSLAB) could present major interests in dairy product technology. Four reasons can be mentioned: i) it can grow in milk during the ripening period with no competition with starter LAB, ii) this species synthesizes different flavouring compounds e.g., 3-methylbutanal, iii) it can inhibit the growth of foodborne pathogens as Listeria monocytogenes due to its ability to produce bacteriocins, iv) it has never been reported to be involved in human diseases as no cases of human infection have been directly linked to the consumption of dairy products containing this species.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Carnobacterium/isolamento & purificação , Laticínios/microbiologia , Tecnologia de Alimentos , Animais , Carnobacterium/classificação , Carnobacterium/genética , Carnobacterium/fisiologia , Qualidade de Produtos para o Consumidor , Conservação de Alimentos , Humanos
18.
Food Microbiol ; 26(6): 645-52, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19527841

RESUMO

In order to contribute to the preservation of the Lebanese dairy heritage, the aim of this study was to characterize the Darfiyeh cheese, a traditional variety made from raw goat's milk and ripened in goat's skin. Three independent batches of Darfiyeh production were analyzed after 20, 40 and 60 days of ripening. Mesophilic lactobacilli, thermophilic coccal-shaped lactic acid bacteria (LAB) and thermophilic lactobacilli were enumerated. In order to explore the Darfiyeh natural ecosystem, a combination of phenotypical and molecular approaches was applied. The latter included Polymerase Chain Reaction-temporal temperature gel electrophoresis (PCR-TTGE), classical PCR and quantitative PCR. These methods revealed the presence of Streptococcus thermophilus, Enterococcus faecium, Enterococcus durans, Enterococcus faecalis, Enterococcus malodoratus, group D Streptococcus sp., Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris, Lactobacillus plantarum, Lactobacillus curvatus, Staphylococcus haemolyticus, Escherichia coli, Clostridium sp./Eubacterium tenue. Real-time PCR enabled quantification of E. faecium, with a detection of 10(7)-10(9) cfu g(-1) of product. The present molecular approaches combined with phenotypic method allowed describing the complex natural ecosystem of Darfiyeh, giving useful information for the preservation of Lebanese artisanal dairy products.


Assuntos
Bactérias/isolamento & purificação , Queijo/microbiologia , DNA Bacteriano/análise , Ecossistema , Microbiologia de Alimentos , Animais , Bactérias/genética , Técnicas de Tipagem Bacteriana , Biodiversidade , Contagem de Colônia Microbiana , Eletroforese em Gel de Poliacrilamida , Enterococcus/genética , Enterococcus/isolamento & purificação , Fermentação , Cabras , Humanos , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Líbano , Reação em Cadeia da Polimerase , Especificidade da Espécie , Streptococcus/genética , Streptococcus/isolamento & purificação , Fatores de Tempo
19.
Food Chem Toxicol ; 47(4): 893-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19271288

RESUMO

Two purified class IIa carnobacteriocins Cbn BM1 and Cbn B2, from Carnobacterium maltaromaticum CP5, were evaluated for antimicrobial activity against pathogenic, spoilage and lactic acid bacteria. Then, the presence of a synergistic mode of action of these two carnobacteriocins on Listeria sp., Enterococcus sp. and Carnobacterium sp. was investigated. A synergistic mode of action between Cbn BM1 and Cbn B2 on sensitive target bacteria was demonstrated using the FIC index method. Combinations of carnobacteriocins enhanced their antibacterial activities and MICs were significantly reduced, between 2- and 15-fold, by the addition of the second bacteriocin. To improve the safety of the bacteriocins as biopreservative agents, the cytotoxicity of the combination of theses two bacteriocins was determined on Caco-2 cell line. However, these two peptides used alone or in combination, at concentration 100-fold higher than those required for antimicrobial activity, were not cytotoxic. This suggests that the two carnobacteriocins produced by C. maltaromaticum CP5 could be potential natural agents for food preservation.


Assuntos
Bactérias/efeitos dos fármacos , Bacteriocinas/farmacologia , Células CACO-2 , Sinergismo Farmacológico , Conservantes de Alimentos/farmacologia , Humanos , Testes de Sensibilidade Microbiana
20.
FEMS Microbiol Lett ; 289(2): 193-201, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19016881

RESUMO

Mesenterocin 52A (Mes 52A) is a class IIa bacteriocin produced by Leuconostoc mesenteroides ssp. mesenteroides FR52. The interaction of Mes 52A with bacterial membranes of sensitive, resistant and insensitive Leuconostoc strains has been investigated. The degree of insertion of Mes 52A on the phospholipid bilayer was studied by fluorescence anisotropy measurements using two probes, 1-(4-trimethylammonium)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and DPH, located at different positions in the membrane, and the consequence for K(+) efflux and proton motive force was analyzed. Mes 52A caused an increase in the fluorescence of TMA-DPH and DPH in the membrane of the sensitive strain L. mesenteroides ssp. mesenteroides LMA 7, indicating that Mes 52A inserts into the cytoplasmic membrane of this sensitive strain. This insertion leads to K(+) efflux, without perturbation of DeltapH and a weak modification of DeltaPsi, and is consistent with pore formation. With the high-level resistant strain L. mesenteroides ssp. mesenteroides LMA 7AR, or with the insensitive strain Leuconostoc citreum CIP 103405, no modification of TMA-DPH or DPH anisotropy occurred, even in the presence of high Mes 52A levels. The membrane potential was not modified and no K(+) efflux was detected. There is a clear correlation between the physico-chemical characteristics of the membrane, the degree of Mes 52A penetration, the mechanism of action and the resistance or insensitivity characteristic of the target strains.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Farmacorresistência Bacteriana , Leuconostoc/efeitos dos fármacos , Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Leuconostoc/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...