Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes Metab ; 44(3): 292-295, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29129540

RESUMO

AIM: Oxytocin administration to diet-induced obese (DIO) rodents, monkeys and humans decreases body weight and fat mass with concomitant improvements in glucose metabolism. Moreover, several studies show an immunomodulatory role of oxytocin in a number of settings (such as atherosclerosis, injury, sepsis). This study aims to shed some light on the effects of oxytocin on macrophage polarization and cytokine production, as well as its possible impact on these parameters in adipose tissue in DIO mice with impaired glucose metabolism. METHODS: Mouse bone marrow cells were differentiated into macrophages and treated with oxytocin. Macrophage proliferation, cytokine secretion and macrophage populations were determined. For experiments in vivo, DIO mice were treated with oxytocin for 2 weeks. Body weight and composition and glucose tolerance were subsequently followed. At the end of treatment, adipose tissue macrophage populations, plasma cytokine levels and cytokine expression in adipose tissue were determined. RESULTS: In bone marrow-derived macrophages, oxytocin induced an anti-inflammatory phenotype (decreased M1/M2 ratio). In M1-derived macrophages, oxytocin decreased TNFα secretion, with no effects on the other cytokines tested nor any effect on cytokine secretion by M2-derived macrophages. Oxytocin treatment in DIO mice in vivo led to decreased body weight accompanied by an improvement in glucose tolerance, with no changes in plasma cytokine levels. In adipose tissue, oxytocin decreased Tnfα expression without modifying the M1/M2 macrophage ratio. CONCLUSION: Oxytocin treatment decreases TNFα production both in vitro (in bone marrow-derived macrophages) and in vivo (in epididymal adipose tissue) in DIO mice. This effect may also be contributory to the observed improvement in glucose metabolism.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Ocitocina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Tecido Adiposo/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Macrófagos/metabolismo , Camundongos
2.
Br J Pharmacol ; 165(7): 2325-40, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22014210

RESUMO

BACKGROUND AND PURPOSE: mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti-cancer agents. However, new-onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures. EXPERIMENTAL APPROACH: Sirolimus was administered to rats fed either a standard or high-fat diet for 21 days. Metabolic parameters were measured in vivo and in ex vivo tissues. Insulin sensitivity was assessed by glucose tolerance tests and euglycaemic hyperinsulinaemic clamps. Rapamycin effects on glucose metabolism and insulin signalling were further evaluated in cultured myotubes. KEY RESULTS: Sirolimus induced a decrease in food intake and concomitant weight loss. It also induced specific fat mass loss that was independent of changes in food intake. Despite these beneficial effects, Sirolimus-treated rats were glucose intolerant, hyperinsulinaemic and hyperglycaemic, but not hyperlipidaemic. The euglycaemic hyperinsulinaemic clamp measurements showed skeletal muscle is a major site of Sirolimus-induced insulin resistance. At the molecular level, long-term Sirolimus administration attenuated glucose uptake and metabolism in skeletal muscle by preventing full insulin-induced Akt activation and altering the expression and translocation of glucose transporters to the plasma membrane. In rats fed a high-fat diet, these metabolic defects were exacerbated, although Sirolimus-treated animals were protected from diet-induced obesity. CONCLUSIONS AND IMPLICATIONS: Taken together, our data demonstrate that the diabetogenic effect of chronic rapamycin administration is due to an impaired insulin action on glucose metabolism in skeletal muscles.


Assuntos
Imunossupressores/toxicidade , Resistência à Insulina , Sirolimo/toxicidade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tecido Adiposo/efeitos dos fármacos , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Glucose/metabolismo , Técnica Clamp de Glucose , Intolerância à Glucose/induzido quimicamente , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...