Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 869: 161706, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682549

RESUMO

Anaerobic digestion (AD) and composting are commonly utilized sludge management methods however, the influence of different coagulant types on these biological processes and their stabilized biomass characteristics have not been fully explained. In this study, the effect of the coagulant used in municipal wastewater treatment on the biological stabilization of sludge was investigated. Fully controlled and monitored small-scale AD and composting bioreactors were utilized. The coagulants tested included an inorganic coagulant (IC), polyaluminium chloride (PAC), and organic coagulants, (OC) polyamine (pAmine) and chitosan (Chit). Overall, the coagulant applied showed a measurable influence on the biological stabilization of sludge. The presence of complex organics compounds from OC in the sludge biomass was found to decrease biomass biodegradability while increasing gas production. During AD, Chit-sludge achieved higher biogas production than pAmine- and PAC-sludges (13 % and 16 %, respectively, in Nm3 CH4 t-1VS). In composting, pAmine-sludge achieved the highest feedstock temperature (34-35 °C) and CO2 gas emissions, followed by Chit- (33 °C) and PAC-sludges (32 °C). Generally, tot-P concentration in PAC-sludge was higher than in pAmine and Chit-sludges both before (20, 17 and 15 g/kg DM, consecutively) and after AD (23, 21 and 20.5 g/kg DM, consecutively), and during the composting (31, 29.5 and 26 g/kg DM, consecutively) process. Tot-N concentrations (g/kg DM) showed a substantial increase after AD (pAmine and PAC ca 50 % and Chit 81 %), while a decrease was observed after composting, specifically in PAC-sludge (PAC 28 %, pAmine and Chit ⁓5 %). The selection of the most suitable coagulant by wastewater treatment facilities depends on the objective of the biological stabilization process. In cases where AD is applied and biogas yield is selected as the target output, the semi-natural OC Chit was found to be the best option among the coagulants tested. Comparably, when the nutrient content of resulting biosolids (AD or composting) is more relevant, it was found that OC-produced sludge contained higher N concentrations, while IC-produced sludge contained slightly higher P concentrations.


Assuntos
Esgotos , Purificação da Água , Biocombustíveis , Águas Residuárias , Purificação da Água/métodos , Reatores Biológicos , Anaerobiose
2.
J Environ Manage ; 271: 111002, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778288

RESUMO

In municipal wastewater treatment, inorganic coagulants (IC), e.g. polyaluminium chloride (PAC), are normally used to remove pollutants such as dissolved and particulate nutrients, in a process called coagulation/flocculation. However, IC use has been linked to issues e.g. in effluent water post-treatment, sludge management and disposal (IC increase sludge volume and metal concentrations in sludge), etc., raising uncertainties about their overall cost-efficiency and environmental benefits. In this study, the suitability of organic coagulants (OC) as sole precipitation agents to replace IC (PAC) was investigated. A total of 10 synthetic (i.e. polyDADMACs and polyamines) and semi-natural (chitosan, starch, and tannin-based) OC products were tested in treatment of samples from primary sedimentation and secondary sedimentation stages of municipal wastewater treatment, and their performance was compared with that of PAC. The study was conducted using the jar test methodology. The coagulants were tested for their ability to remove target pollutants (e.g. BOD7, COD, SS, tot-P, PO4-P, tot-N) and form rapidly settling flocs. In general, higher (up to 60%) coagulant doses were needed in treatment of secondary wastewater samples than primary samples. In comparison with the OC doses required for effective treatment, the PAC doses were higher (up to 80%). In treatment of secondary wastewater samples, OC with high molecular weight (MW) and high charge density (CD) (e.g. pAmine1) achieved best removal of target pollutants (e.g. 72% SS, 87% PO4-P, 88% BOD7), followed by PAC. In treatment of primary wastewater, PAC performed best (removing e.g. 96% SS, 96% PO4-P), closely followed by chitosan and polyamine products. Based on these results, polyamine products with high MW and (very) high CDs have the potential to act as the sole precipitation agent in both primary and secondary stages of municipal wastewater treatment. Further research is needed to determine the effect of residual coagulant on downstream water and sludge treatment processes (e.g. activated sludge process, sludge dewatering, etc.).


Assuntos
Polieletrólitos , Águas Residuárias , Floculação , Esgotos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...