Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 55(20): 10438-10444, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27686632

RESUMO

U3O8 is considered to be the most stable phase for uranium oxide. Its structural properties must be accurately understood to foresee and manage aspects such as its leaching behavior when spent nuclear fuel is stored in an oxidative environment. Moreover, as fuel irradiation causes the formation of fission products and activation products such as plutonium and minor actinides, it is probable that U3O8 will be mixed with other chemical elements under real conditions of oxidation. The storage issue can be extended to americium transmutation, where the irradiated compounds are mixed oxides composed of uranium and americium. This study thus focused on determining the structural properties of a solid solution containing uranium and trivalent americium (U/Am ratio = 90/10) and synthesized so as to obtain conventional U3O8 oxide. This paper presents the possibility of combining trivalent americium with uranium in a U3O8 mixed oxide for the first time, despite the high valence and atomic ratio differences, and proposes novel structural arrangements. X-ray diffraction measurements reveal americium substitution in U3O8 uranium cationic sites, leading to phase transformation into a U3O8 high-temperature structure and general lattice swelling. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure experiments highlight an excess of U+VI organized in uranyl units as the main consequence of accommodation.

2.
Dalton Trans ; 44(14): 6391-9, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25742991

RESUMO

Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±Î´ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±Î´ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...