Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172380, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604358

RESUMO

The presence of nanoplastics (NPs) and microplastics (MPs) in the environment is recognised as a global-scale problem. Due to their hydrophobic nature and large specific surface, NPs and MPs can adsorb other contaminants, as polycyclic aromatic hydrocarbons (PAHs), and modulate their bioavailability and hazard. Adult zebrafish were exposed for 3 and 21 days to: (1) 0.07 mg/L NPs (50 nm), (2) 0.05 mg/L MPs (4.5 µm), (3) MPs with sorbed oil compounds of the water accommodated fraction (WAF) of a naphthenic crude oil (MPs-WAF), (4) MPs with sorbed benzo(a)pyrene (MPs-B(a)P), (5) 5 % WAF and (6) 21 µg/L B(a)P. Electrodense particles resembling NPs were seen in the intestine lumen close to microvilli. MPs were abundantly found in the intestine lumen, but not internalised into the tissues. After 21 days, NPs caused a significant downregulation of cat, and upregulation of gpx1a and sod1, while MPs upregulated cyp1a and increased the prevalence of liver vacuolisation. No histopathological alteration was observed in gills. In this study, contaminated MPs did not increase PAH levels in zebrafish but results highlight the potential differential impact of plastic particles depending on their size, making it necessary to urgently address the ecotoxicological impact of real environmental NPs and MPs.


Assuntos
Microplásticos , Hidrocarbonetos Policíclicos Aromáticos , Poliestirenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poliestirenos/toxicidade , Nanopartículas/toxicidade
2.
J Hazard Mater ; 452: 131280, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030218

RESUMO

Graphene oxide (GO) has gained a great scientific and economic interest due to its unique properties. As incorporation of GO in consumer products is rising, it is expected that GO will end up in oceans. Due to its high surface to volume ratio, GO can adsorb persistent organic pollutants (POPs), such as benzo(a)pyrene (BaP), and act as carrier of POPs, increasing their bioavailability to marine organisms. Thus, uptake and effects of GO in marine biota represent a major concern. This work aimed to assess the potential hazards of GO, alone or with sorbed BaP (GO+BaP), and BaP alone in marine mussels after 7 days of exposure. GO was detected through Raman spectroscopy in the lumen of the digestive tract and in feces of mussels exposed to GO and GO+BaP while BaP was bioaccumulated in mussels exposed to GO+BaP, but especially in those exposed to BaP. Overall, GO acted as a carrier of BaP to mussels but GO appeared to protect mussels towards BaP accumulation. Some effects observed in mussels exposed to GO+BaP were due to BaP carried onto GO nanoplatelets. Enhanced toxicity of GO+BaP with respect to GO and/or BaP or to controls were identified for other biological responses, demonstrating the complexity of interactions between GO and BaP.


Assuntos
Grafite , Mytilus , Poluentes Químicos da Água , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Poluentes Químicos da Água/análise , Grafite/toxicidade
3.
Sci Total Environ ; 851(Pt 2): 157999, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988593

RESUMO

Microplastics (MPs) can adsorb persistent organic pollutants such as oil hydrocarbons and may facilitate their transfer to organisms (Trojan horse effect). The aim of this study was to examine the effects of a 21 day dietary exposure to polystyrene MPs of 4.5 µm at 1000 particles/mL, alone and with sorbed oil compounds from the water accommodated fraction (WAF) of a naphthenic North Sea crude oil at two dilutions (25 % and 100 %), on marine mussels. An additional group of mussels was exposed to 25 % WAF for comparison. PAHs were accumulated in mussels exposed to WAF but not in those exposed to MPs with sorbed oil compounds from WAF (MPs-WAF), partly due to the low concentration of PAHs in the studied crude oil. Exposure to MPs or to WAF alone altered the activity of enzymes involved in aerobic (isocitrate dehydrogenase) and biotransformation metabolism (glutathione S-transferase). Prevalence of oocyte atresia and volume density of basophilic cells were higher and absorption efficiency lower in mussels exposed to MPs and to WAF than in controls. After 21 days MPs caused DNA damage (Comet assay) in mussel hemocytes. In conclusion, a Trojan horse effect was not observed but both MPs and oil WAF caused an array of deleterious effects on marine mussels at different levels of biological organization.


Assuntos
Mytilus , Petróleo , Poluentes Químicos da Água , Animais , Microplásticos , Petróleo/toxicidade , Petróleo/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Poliestirenos/metabolismo , Água/metabolismo , Poluentes Orgânicos Persistentes , Mar do Norte , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/farmacologia , Poluentes Químicos da Água/análise , Glutationa Transferase/metabolismo
4.
Environ Res ; 214(Pt 1): 113763, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779621

RESUMO

Plastics production and usage has exponentially increased in the last decades around the world. Due to the insufficient waste management, a significant amount of plastic ends up in the environment, where they tend to fragment into micro- and nano-plastics (NPs), and accumulate in aquatic organisms with still unknown effects. Although studies have indicated that lipid metabolism is a main target of NPs, this mechanism has not been extensively explored. In this study, we evaluated changes in the lipidome of mussel hemocytes after exposure to polystyrene (PS) NPs of 50 and 500 nm, at two different concentrations (106 and 109 particles/mL) for 24 h. The lipidome of hemocytes, analyzed by FIA-ESI (±) Orbitrap, was characterized by a relatively high abundance of cholesteryl esters (CEs) and phosphatidylcholine-plasmalogens (PC-Os/PC-Ps), involved in cell's defense against oxidative stress and membrane reorganization. In hemocytes exposed to PS NPs, a number of highly unsaturated membrane lipids were down-regulated, indicating a reorganization of the cell membranes after exposure to the particles and an oxidation of lipids with a high number of double bonds. This reduction was more evident after exposure to 50 nm NPs -both concentrations- and 500 nm NPs -high concentration-. The analysis of culture medium suggested increased release of vesicles enriched in triglycerides (TGs). The relevance of these responses to NP exposure on the immune function of hemocytes remains to be investigated.


Assuntos
Mytilus , Nanopartículas , Poluentes Químicos da Água , Animais , Hemócitos , Lipidômica , Microplásticos , Poliestirenos
5.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335754

RESUMO

The occurrence of nanoplastics (NPs) and microplastics (MPs) in aquatic ecosystems and their capacity to sorb hydrophobic pollutants is nowadays an issue of great concern. This study aimed to assess the potential bioavailability and acute toxicity of polystyrene (PS) NPs (50 and 500 nm) and of MPs (4.5 µm), alone and with sorbed benzo(a)pyrene (B(a)P), in the embryo/larval stages of brine shrimps and zebrafish. Exposure to pristine plastics up to 50.1 mg PS/L did not cause significant impact on brine shrimp survival, while some treatments of plastics-B(a)P and all concentrations of B(a)P (0.1-10 mg/L) resulted acutely toxic. In zebrafish, only the highest concentrations of MPs-B(a)P and B(a)P caused a significant increase of malformation prevalence. Ingestion of NPs was observed by 24-48 h of exposure in the two organisms (from 0.069 to 6.87 mg PS/L). In brine shrimps, NPs were observed over the body surface and within the digestive tract, associated with feces. In zebrafish, NPs were localized in the eyes, yolk sac, and tail at 72 h, showing their capacity to translocate and spread into the embryo. MP ingestion was only demonstrated for brine shrimps. In zebrafish embryos exposed to plastics-B(a)P, B(a)P appeared in the yolk sac of the embryos. The presence of B(a)P was also noticeable in brine shrimps exposed to 500 nm NPs-B(a)P. In conclusion, NPs entered and spread into the zebrafish embryo and PS NPs, and MPs were successful vectors of B(a)P to brine shrimp and zebrafish embryos. Particle size played a significant role in explaining the toxicity of plastics-B(a)P. Our study provides support for the idea that plastics may pose a risk to aquatic organisms when combined with persistent organic pollutants such as B(a)P.

6.
Toxics ; 10(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35051060

RESUMO

Filter feeders are target species for microplastic (MP) pollution, as particles can accumulate in the digestive system, disturbing feeding processes and becoming internalized in tissues. MPs may also carry pathogens or pollutants present in the environment. This work assessed the influence of polystyrene (PS) MP size and concentration on accumulation and depuration time and the role of MPs as vectors for metallic (Cd) and organic (benzo(a)pyrene, BaP) pollutants. One-day exposure to pristine MPs induced a concentration-dependent accumulation in the digestive gland (in the stomach and duct lumen), and after 3-day depuration, 45 µm MPs appeared between gill filaments, while 4.5 µm MPs also occurred within gill filaments. After 3-day exposure to contaminated 4.5 µm MPs, mussels showed increased BaP levels whilst Cd accumulation did not occur. Here, PS showed higher affinity to BaP than to Cd. Three-day exposure to pristine or contaminated MPs did not provoke significant alterations in antioxidant and peroxisomal enzyme activities in the gills and digestive gland nor in lysosomal membrane stability. Exposure to dissolved contaminants and to MP-BaP caused histological alterations in the digestive gland. In conclusion, these short-term studies suggest that MPs are ingested and internalized in a size-dependent manner and act as carriers of the persistent organic pollutant BaP.

7.
Sci Rep ; 11(1): 22396, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789853

RESUMO

In this work we studied the ability of polystyrene (PS) nanoplastics (NPs) and microplastics (MPs) to transfer benzo(a)pyrene (BaP) to mussel hemocytes and to produce toxic effects in vitro. For this, intracellular fate and toxicity of PS NPs (0.05 µm) and MPs (0.5 and 4.5 µm) alone or with BaP and of BaP alone were assessed. Particles of 0.05 and 0.5 µm largely aggregated in the exposure medium whereas presence of BaP reduced particle aggregation. Cells internalized PS NPs and MPs alone or with BaP and these were found inside and outside lysosomes, depending on their size. PS particles alone or with BaP were cytotoxic to hemocytes only at the highest concentrations tested. The same was true for most sublethal endpoints except for increased phagocytic activity provoked by NPs and 0.5 µm MPs at lower concentrations. Plastic particles appeared to be the main drivers for reduced plasma membrane integrity and increased phagocytic and lysosomal activities whereas BaP appeared to contribute more to reduced cell viability and phagocytosis and increased ROS production and genotoxicity. Overall, PS NPs and MPs can act as carriers of BaP to mussel hemocytes, rising concerns about risks plastics associated to pollutants may pose to aquatic organisms.


Assuntos
Benzo(a)pireno/administração & dosagem , Hemócitos/efeitos dos fármacos , Microplásticos , Nanopartículas , Poliestirenos , Animais , Benzo(a)pireno/química , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Hemócitos/ultraestrutura , Microplásticos/química , Mytilus , Nanopartículas/química , Tamanho da Partícula , Fagocitose/efeitos dos fármacos , Poliestirenos/química , Espécies Reativas de Oxigênio , Poluentes Químicos da Água
8.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205599

RESUMO

BODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface. Different combinations varying the type of PS (commercial Rose Bengal, Thionine and Chlorine e6 or custom-made BODIPY-based), the linkage design, and the length of PEG are detailed. All the nanosystems were physicochemically characterized (morphology, diameter, size distribution and PS loaded amount) and photophysically studied (absorption capacity, fluorescence efficiency, and singlet oxygen production) in suspension. For the most promising PS-PEG-FA silica nanoplatforms, the biocompatibility in dark conditions and the phototoxicity under suitable irradiation wavelengths (blue, green, or red) at regulated light doses (10-15 J/cm2) were compared with PSs free in solution in HeLa cells in vitro.


Assuntos
Nanopartículas , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Rosa Bengala , Dióxido de Silício/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Fólico , Células HeLa , Humanos , Polietilenoglicóis
9.
Sci Total Environ ; 775: 145669, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33618313

RESUMO

Because of its surface characteristics, once in the aquatic environment, graphene could act as a carrier of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), to aquatic organisms. In this study we aimed to (1) assess the capacity of graphene oxide (GO) to sorb PAHs and (2) to evaluate the toxicity of GO alone and in combination with PAHs on zebrafish embryos and adults. GO showed a high sorption capacity for benzo(a)pyrene (B(a)P) (98% of B(a)P sorbed from a nominal concentration of 100 µg/L) and for other PAHs of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil, depending on their log Kow (95.7% of phenanthrene, 84.4% of fluorene and 51.5% of acenaphthene). In embryos exposed to different GO nanomaterials alone and with PAHs, no significant mortality was recorded for any treatment. Nevertheless, malformation rate increased significantly in embryos exposed to the highest concentrations (5 or 10 mg/L) of GO and reduced GO (rGO) alone and with sorbed B(a)P (GO-B(a)P). On the other hand, adults were exposed for 21 days to 2 mg/L of GO, GO-B(a)P and GO co-exposed with WAF (GO + WAF) and to 100 µg/L B(a)P. Fish exposed to GO presented GO in the intestine lumen and liver vacuolisation. Transcription level of genes related to cell cycle regulation and oxidative stress was not altered, but the slight up-regulation of cyp1a measured in fish exposed to B(a)P for 3 days resulted in a significantly increased EROD activity. Fish exposed to GO-B(a)P and to B(a)P for 3 days and to GO + WAF for 21 days showed significantly higher catalase activity in the gills than control fish. Significantly lower acetylcholinesterase activity, indicating neurotoxic effects, was also observed in all fish treated for 21 days. Results demonstrated the capacity of GO to carry PAHs and to exert sublethal effects in zebrafish.


Assuntos
Grafite , Nanoestruturas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Grafite/toxicidade , Mar do Norte , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
10.
Sci Total Environ ; 750: 141303, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871366

RESUMO

Silver nanoparticles (Ag NPs) are present in numerous consumer products due to their antimicrobial and other unique properties, thus concerns about their potential input into aquatic ecosystems are increasing. Toxicity of Ag NPs in waterborne exposed aquatic organisms has been widely investigated, but studies assessing the potential toxic effects caused after ingestion through the food web, especially at low realistic concentrations, remain scarce. Moreover, it is not well known whether season may influence toxic effects of Ag NPs. The main objective of this study was to determine cell and tissue level responses in mussels Mytilus galloprovincialis dietarily exposed to poly-N-vinyl-2-pirrolidone/polyethyleneimine (PVP/PEI) coated 5 nm Ag NPs for 1, 7 and 21 days both in autumn and spring. Mussels were fed every day with microalgae Isochrysis galbana exposed for 24 h to a low dose (1 µg Ag/L Ag NPs) in spring and to a higher dose (10 µg Ag/L Ag NPs) in spring and autumn. Mussels fed with microalgae exposed to the high dose accumulated Ag significantly after 21 days in both seasons, higher levels being measured in autumn compared to spring. Intralysosomal metal accumulation measured in mussel digestive gland and time- and dose-dependent reduction of mussels health status was similar in both seasons. DNA strand breaks increased significantly in hemocytes at both exposure doses along the 21 days in spring and micronuclei frequency showed an increasing trend after 1 and 7 days of exposure to 1 µg Ag/L Ag NPs in spring and to 10 µg Ag/L in both seasons. Values decreased after 21 days of exposure in all the cases. In conclusion, PVP/PEI coated 5 nm Ag NPs ingested through the food web were significantly accumulated in mussel tissues and caused adverse cell and tissue level effects both in autumn and in spring.


Assuntos
Nanopartículas Metálicas , Mytilus , Poluentes Químicos da Água , Animais , Ecossistema , Nanopartículas Metálicas/toxicidade , Estações do Ano , Prata/toxicidade
11.
Sci Rep ; 10(1): 20486, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235275

RESUMO

To overcome the scarcity of primary human alveolar epithelial cells for lung research, and the limitations of current cell lines to recapitulate the phenotype, functional and molecular characteristics of the healthy human alveolar epithelium, we have developed a new method to immortalise primary human alveolar epithelial lung cells using a non-viral vector to transfect the telomerase catalytic subunit (hTERT) and the simian virus 40 large-tumour antigen (SV40). Twelve strains of immortalised cells (ICs) were generated and characterised using molecular, immunochemical and morphological techniques. Cell proliferation and sensitivity to polystyrene nanoparticles (PS) were evaluated. ICs expressed caveolin-1, podoplanin and receptor for advanced glycation end-products (RAGE), and most cells were negative for alkaline phosphatase staining, indicating characteristics of AT1-like cells. However, most strains also contained some cells that expressed pro-surfactant protein C, classically described to be expressed only by AT2 cells. Thus, the ICs mimic the cellular heterogeneity in the human alveolar epithelium. These ICs can be passaged, replicate rapidly and remain confluent beyond 15 days. ICs showed differential sensitivity to positive and negatively charged PS nanoparticles, illustrating their potential value as an in vitro model to study respiratory bioreactivity. These novel ICs offer a unique resource to study human alveolar epithelial biology.


Assuntos
Células Epiteliais Alveolares/metabolismo , Vetores Genéticos/metabolismo , Fosfatase Alcalina/metabolismo , Células Epiteliais Alveolares/ultraestrutura , Linhagem Celular Transformada , Proliferação de Células , Respiração Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Hidrodinâmica , Lipídeos/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Eletricidade Estática , Transcrição Gênica , Transfecção
12.
Chemosphere ; 238: 124588, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31545210

RESUMO

Few works have addressed the effects provoked by the exposure to cadmium containing nanoparticles (NPs) on adult zebrafish (Danio rerio). We studied the effects of CdS NPs (5 nm) or ionic cadmium (10 µg Cd/L) after 3 and 21 d of exposure and at 6 months post-exposure (mpe). Acute toxicity was recorded after exposure to both forms of cadmium. Significant cadmium accumulation was measured in the whole fish after both treatments and autometallography showed a higher accumulation of metal in the intestine than that in the liver. Histopathological alterations, such as inflammation in gills and vacuolization in the liver, were detected after the exposure to both cadmium forms and, in a lower extent, at 6 mpe. X-ray analysis proved the presence of CdS NPs in these organs. The hepatic transcriptome analysis revealed that gene ontology terms such as "immune response" or "actin binding" were over-represented after 21 d of exposure to ionic cadmium respect to CdS NPs treatment. Exposure to CdS NPs caused a significant effect on pathways involved in the immune response and oxidative stress, while the exposure to ionic cadmium affected significantly pathways involved in DNA damage and repair and in the energetic metabolism. Oxidative damage to liver proteins was detected after the exposure to ionic cadmium, while a stronger destabilization of the hepatocyte lysosomal membrane was recorded under exposure to CdS NPs. In summary, although ionic cadmium provoked stronger effects than CdS NPs, both cadmium forms exerted an array of lethal and sublethal effects to zebrafish.


Assuntos
Bioacumulação/fisiologia , Compostos de Cádmio/toxicidade , Cádmio/toxicidade , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Brânquias/metabolismo , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos
13.
Sci Total Environ ; 684: 548-566, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31154227

RESUMO

Due to their hydrophobicity and relatively large surface area, microplastics (MPs) can act as carriers of hydrophobic pollutants in the ocean and may facilitate their transfer to organisms. This study examined effects of dietary exposure to polystyrene MPs of 0.5 and 4.5 µm alone and with sorbed benzo[a]pyrene (BaP) on mussels Mytilus galloprovincialis in order to elucidate the effects of MP size and the presence of sorbed BaP on the organism. MPs were provided daily, mixed with algae, during 26 days at equivalent mass (0.058 mg/L), corresponding to 1000 particles/mL for 4.5 µm MPs and to 7.44 × 105 particles/mL for 0.5 µm MPs. Effects were determined on early cellular biomarkers in hemocytes, structure and cell type composition of digestive tubules (DTs), histopathology and whole organism responses (condition index (CI), clearance rate (CR), food absorption efficiency (AE), respiration rate (RR) and scope for growth (SFG)). BaP concentrations in mussels increased with time, in particular when sorbed to smaller MPs. Large MPs were abundant in the lumen of stomach and DTs, but were also occasionally found within epithelial cells. Effects in all treatments increased with exposure time. MPs with sorbed BaP were more toxic than MPs alone according to hemocyte viability and catalase activity and to the quantitative structure of DT epithelium. Higher toxicity of small MPs compared to larger ones was recorded for DNA damage and cell composition of DTs. At tissue level a slight increase in prevalence of inflammatory responses occurred in all exposed groups. At whole organism level a compensatory effect was observed on absorption efficiency across MP treatments at day 26, resulting in increased SFG in mussels exposed to small MPs with sorbed BaP. This could be related to an increased energy need to deal with stress observed in biomarkers. Further work is required to understand the Trojan horse effect of a variety of plastic type, size, shape combinations together with a wide variety of pollutants.


Assuntos
Benzo(a)pireno/efeitos adversos , Mytilus/efeitos dos fármacos , Material Particulado/efeitos adversos , Poliestirenos/efeitos adversos , Absorção Fisiológica , Animais , Biomarcadores/análise , Dieta , Mytilus/fisiologia , Tamanho da Partícula
14.
Artigo em Inglês | MEDLINE | ID: mdl-30940556

RESUMO

Toxicity of AgNPs has been widely studied in waterborne exposed aquatic organisms. However, toxic effects caused by AgNPs ingested through the diet and depending on the season are still unexplored. The first cell response after exposure to xenobiotics occurs at gene transcription level. Thus, the aim of this study was to assess transcription level effects in the digestive gland of female mussels after dietary exposure to AgNPs both in autumn and in spring. Mussels were fed daily for 21 days with Isochrysis galbana microalgae previously exposed for 24 h to a dose close to environmentally relevant concentrations of 1 µg Ag/L PVP/PEI coated 5 nm AgNPs (in spring) and to a higher dose of 10 µg Ag/L of the same AgNPs both in autumn and in spring. After 1 and 21 days, mussels RNA was hybridized in a custom microarray containing 7806 annotated genes. Mussels were more responsive to the high dose compared to the low dose of AgNPs and a higher number of probes were altered in autumn than in spring. In both seasons, significantly regulated genes were involved in the cytoskeleton and lipid transport and metabolism COG categories, among others, while genes involved in carbohydrate transport and metabolism were specifically altered in autumn. Overall, transcription patterns were differently altered depending on the exposure time and season, indicating that season should be considered in ecotoxicological studies of metal nanoparticles in mussels.


Assuntos
Nanopartículas Metálicas/toxicidade , Mytilus/efeitos dos fármacos , Polietilenoimina/química , Povidona/química , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Exposição Dietética/efeitos adversos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/química
15.
Sci Total Environ ; 670: 1084-1094, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31018424

RESUMO

Dispersants used in oil spills could result toxic to marine organisms and could influence the toxicity of oil compounds. The aim of this work was to uncover the mechanisms of action of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil produced at 10, 15 and 20 °C without and with the dispersant Finasol OSR52 (WAF and WAFD, respectively) using hemocytes of the marine mussel Mytilus galloprovincialis. Primary cultures of hemocytes were exposed in glass-coated microplates to different WAF or WAFD dilutions (0.25, 2.5, 25, 50 and 100%) and to the dispersant alone at the same concentrations present in the WAFD dilutions (1.25, 12.5, 125, 250 and 500 mg/L). Of the two in vitro approaches tested, the second one was selected which involved exposure of hemocytes for 4 h to unfiltered WAF, WAFD and dispersant dilutions without cell culture media. WAF decreased hemocytes viability only at the highest dilution whereas WAFD and the dispersant alone were cytotoxic at the three highest concentrations. Temperature of production of WAF, WAFD and dispersant did not influence their cytotoxicity to hemocytes. WAF increased ROS production and MXR transport activity in hemocytes. Exposure to WAFD and dispersant increased ROS production, provoked plasma membrane and actin cytoskeleton disruption and decreased phagocytic activity. In conclusion, the dispersant tested was toxic to mussel hemocytes and it greatly increased the toxicity of WAFD. The present data could be useful for the environmental risk assessment of oil spills and their remediation strategies in the marine environment.


Assuntos
Mytilus/efeitos dos fármacos , Petróleo/toxicidade , Tensoativos/toxicidade , Animais , Hemócitos/efeitos dos fármacos , Mar do Norte
16.
Aquat Toxicol ; 210: 56-68, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30825730

RESUMO

Potential toxic effects of Ag NPs ingested through the food web and depending on the season have not been addressed in marine bivalves. This work aimed to assess differences in protein expression in the digestive gland of female mussels after dietary exposure to Ag NPs in autumn and spring. Mussels were fed daily with microalgae previously exposed for 24 h to 10 µg/L of PVP/PEI coated 5 nm Ag NPs. After 21 days, mussels significantly accumulated Ag in both seasons and Ag NPs were found within digestive gland cells and gills. Two-dimensional electrophoresis distinguished 104 differentially expressed protein spots in autumn and 142 in spring. Among them, chitinase like protein-3, partial and glyceraldehyde-3-phosphate dehydrogenase, that are involved in amino sugar and nucleotide sugar metabolism, carbon metabolism, glycolysis/gluconeogenesis and the biosynthesis of amino acids KEGG pathways, were overexpressed in autumn but underexpressed in spring. In autumn, pyruvate metabolism, citrate cycle, cysteine and methionine metabolism and glyoxylate and dicarboxylate metabolism were altered, while in spring, proteins related to the formation of phagosomes and hydrogen peroxide metabolism were differentially expressed. Overall, protein expression signatures depended on season and Ag NPs exposure, suggesting that season significantly influences responses of mussels to NP exposure.


Assuntos
Nanopartículas Metálicas/toxicidade , Mytilus/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Estações do Ano , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Feminino , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Nanopartículas Metálicas/química , Microalgas/metabolismo , Mytilus/genética , Mytilus/metabolismo , Polietilenoimina/química , Povidona/química , Biossíntese de Proteínas/genética , Proteômica , Prata/química , Propriedades de Superfície , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/química
17.
Ecotoxicol Environ Saf ; 167: 288-300, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343143

RESUMO

The bioaccumulation, cell, tissue distribution, and biological effects of 5 nm glutathione-capped CdS quantum dots (CdS QDs) in mussels was compared to bulk and aqueous Cd forms through a two-tier experimental approach. In the 1st tier, mussels were exposed for 3 d to 0.05, 0.5 and 5 mg Cd/l (QDs, bulk, aqueous), bioaccumulation, distribution and lysosomal responses were investigated. In the 2nd tier, mussels were exposed for 21 d to the same forms at the lowest effective concentration selected after Tier 1 (0.05 mg Cd/l), biomarkers and toxicopathic effects were investigated. Accumulation was comparable in QDs and aqueous Cd exposed mussels after 3 d. After 21 d, QDs exposed mussels accumulated less than mussels exposed to aqueous Cd and localised in the endo-lysosomal system and released to the alveoli lumen (21 d) after exposure to QDs and aqueous Cd. Intracellular levels of Cd increased on exposure to QDs and aqueous Cd, and to a lesser extent to bulk, and accompanied by the up-regulation of metallothionein 10 (1 d) and 20 (1, 21 d). Lysosomal membrane destabilisation depended on Cd2+ released by all forms but was marked after exposure to aqueous Cd (1 d). Toxicopathic effects (vacuolisation, loss of digestive cells and haemocytic infiltration) were evident after exposure to QDs (1 d) and aqueous Cd (21 d). Toxicity most likely depended on the ionic load resulting from Cd2+ release from the different forms of Cd; yet nanoparticle-specific effects of QDs cannot be disregarded.


Assuntos
Biomarcadores/metabolismo , Mytilus/efeitos dos fármacos , Pontos Quânticos/toxicidade , Animais , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Mytilus/metabolismo , Tamanho da Partícula , Pontos Quânticos/metabolismo , Distribuição Tecidual
18.
Sci Total Environ ; 655: 48-60, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30469068

RESUMO

Toxicity of silver nanoparticles (Ag NPs) to aquatic organisms has been widely studied. However, the potential toxic effects of Ag NPs ingested through the food web, especially at environmentally relevant concentrations, as well as the potential effects on the offspring remain unknown. The aims of this work were to screen the cytotoxicity of Poly N­vinyl­2­pirrolidone/Polyethyleneimine (PVP/PEI) coated 5 nm Ag NPs in hemocytes exposed in vitro and to assess the effects of dietary exposure to Ag NPs on mussels growth, immune status, gonad condition, reproductive success and offspring embryo development. For this, mussels Mytilus galloprovincialis were fed daily with microalgae Isochrysis galbana previously exposed for 24 h to a dose close to environmentally relevant concentrations (1 µg Ag/L Ag NPs) and to a high dose of 10 µg Ag/L Ag NPs. After 24 h of in vitro exposure, Ag NPs were cytotoxic to mussel hemocytes starting at 1 mg Ag/L (LC50: 2.05 mg Ag/L). Microalgae significantly accumulated Ag after the exposure to both doses and mussels fed for 21 days with microalgae exposed to 10 µg Ag/L Ag NPs significantly accumulated Ag in the digestive gland and gills. Sperm motility and fertilization success were not affected but exposed females released less eggs than non-exposed ones. The percentage of abnormal embryos was significantly higher than in control individuals after parental exposure to both doses. Overall, results indicate that Ag NPs taken up through the diet can significantly affect ecologically relevant endpoints such as reproduction success and embryo development in marine mussels.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mytilus/efeitos dos fármacos , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Exposição Dietética/efeitos adversos , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Feminino , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Nanopartículas Metálicas/química , Mytilus/crescimento & desenvolvimento , Mytilus/metabolismo , Aceleradores de Partículas , Tamanho da Partícula , Polietilenoimina/química , Povidona/química , Reprodução/efeitos dos fármacos , Prata/química , Propriedades de Superfície , Poluentes Químicos da Água/química
19.
Sci Total Environ ; 642: 1209-1220, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045502

RESUMO

Effects of silver nanoparticles (Ag NPs) on freshwater species have been reported in several studies, but there is not information on the potential long-term consequences of a previous exposure. In this work, we investigated the long-term effects of maltose-coated Ag NPs (20 nm) and of ionic silver (10 µg/L) after 21 days of exposure and at 6 months post-exposure (mpe) in adult zebrafish. Exposure resulted in significant silver accumulation in the whole body of fish exposed to ionic silver, but not in those exposed to Ag NPs. However, autometallography revealed metal accumulation in the liver and intestine of fish treated with the two silver forms and especially in the intestine of fish exposed to Ag NPs. X-ray microanalysis showed the presence of silver in gills, liver and intestine and of Ag NPs in gill and liver cells. Inflammation and hyperplasia were evident in the gills after both treatments and these histopathological conditions remained at 6 mpe. According to the hepatic transcriptome analysis, at 3 days ionic silver regulated a larger number of transcripts (410) than Ag NPs (129), while at 21 days Ag NPs provoked a stronger effect (799 vs 165 regulated sequences). Gene ontology terms such as "metabolic processes" and "response to stimulus" appeared enriched after all treatments, while "immune system" or "reproductive processes" were specifically enriched after the exposure to Ag NPs. This suggests that the toxicity of Ag NPs may not be solely related to the release of Ag ions, but also to the NP form. No evident effects were found on protein oxidation or on hepatocyte lysosomal membrane stability during exposure, but effects recorded on liver lysosomes and persistent damage on gill tissue at 6 mpe could indicate potential for long-term effects in exposed fish.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Brânquias
20.
Comp Biochem Physiol C Toxicol Pharmacol ; 206-207: 54-64, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29555404

RESUMO

Polar cod is an abundant Arctic key species, inhabiting an ecosystem that is subjected to rapid climate change and increased petroleum related activities. Few studies have investigated biological effects of crude oil on lipid metabolism in this species, despite lipids being a crucial compound for Arctic species to adapt to the high seasonality in food abundance in their habitat. This study examines the effects of dietary crude oil exposure on transcription levels of genes related to lipid metabolism (peroxisome proliferator-activated receptors [ppar-α, ppar-γ], retinoic X receptor [rxr-ß], palmitoyl-CoA oxidase [aox1], cytochrome P4507A1 [cyp7α1]), reproduction (vitellogenin [vtg-ß], gonad aromatase [cyp19a1]) and biotransformation (cytochrome P4501A1 [cyp1a1], aryl hydrocarbon receptor [ahr2]). Exposure effects were also examined through plasma chemistry parameters. Additional fish were exposed to a PPAR-α agonist (WY-14,643) to investigate the role of PPAR-α in their lipid metabolism. The dose-dependent up-regulation of cyp1a1 reflected the activation of genes related to PAH biotransformation upon crude oil exposure. The crude oil exposure did not significantly alter the mRNA expression of genes involved in lipid homeostasis except for cyp7α1 transcription levels. Plasma levels of cholesterol and alanine transaminase showed significant alterations in fish exposed to crude oil at the end of the experiment. WY exposure induced a down-regulation of ppar-α, an effect contrary to studies performed on other fish species. In conclusion, this study showed clear effects of dietary crude oil exposure at environmentally relevant concentrations on xenobiotic biotransformation but revealed only weak alterations in the lipid metabolism of polar cod.


Assuntos
Proteínas de Peixes/metabolismo , Gadiformes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Colesterol 7-alfa-Hidroxilase/antagonistas & inibidores , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Clima Frio , Citocromo P-450 CYP1A1/química , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Indução Enzimática/efeitos dos fármacos , Feminino , Proteínas de Peixes/agonistas , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Gadiformes/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Noruega , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , PPAR alfa/antagonistas & inibidores , PPAR alfa/genética , PPAR alfa/metabolismo , Pirimidinas/farmacologia , Reprodutibilidade dos Testes , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...