Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 321: 121598, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963720

RESUMO

AIMS: A peptide mimetic of a collagen-derived matricryptin (p1159) was shown to reduce left ventricular (LV) dilation and fibrosis after 7 days delivery in a mouse model of myocardial infarction (MI). This suggested p1159 long-term treatment post-MI could have beneficial effects and reduce/prevent adverse LV remodeling. This study aimed to test the potential of p1159 to reduce adverse cardiac remodeling in a chronic MI model and to elucidate p1159 mode-of-action. MATERIALS AND METHODS: Using a permanent occlusion MI rodent model, animals received p1159 or vehicle solution up to 28 days. We assessed peptide treatment effects on scar composition and structure and on systolic function. To assess peptide effects on scar vascularization, a cohort of mice were injected with Griffonia simplicifolia isolectin-B4. To investigate p1159 mode-of-action, LV fibroblasts from naïve animals were treated with increasing doses of p1159. KEY FINDINGS: Matricryptin p1159 significantly improved systolic function post-MI (2-fold greater EF compared to controls) by reducing left ventricular dilation and inducing the formation of a compliant and organized infarct scar, which promoted LV contractility and preserved the structural integrity of the heart. Specifically, infarcted scars from p1159-treated animals displayed collagen fibers aligned parallel to the epicardium, to resist circumferential stretching, with reduced levels of cross-linking, and improved tissue perfusion. In addition, we found that p1159 increases cardiac fibroblast migration by activating RhoA pathways via the membrane receptor integrin α4. SIGNIFICANCE: Our data indicate p1159 treatment reduced adverse LV remodeling post-MI by modulating the deposition, arrangement, and perfusion of the fibrotic scar.


Assuntos
Cicatriz , Infarto do Miocárdio , Camundongos , Animais , Cicatriz/tratamento farmacológico , Cicatriz/metabolismo , Colágeno/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Remodelação Ventricular , Fibrose , Peptídeos/metabolismo , Função Ventricular Esquerda
2.
Am J Physiol Heart Circ Physiol ; 323(3): H585-H596, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35960635

RESUMO

Natural biomaterials hold enormous potential for tissue regeneration. The rapid advance of several tissue-engineered biomaterials, such as natural and synthetic polymer-based scaffolds, has led to widespread application of these materials in the clinic and in research. However, biomaterials can have limited repair capacity; obstacles result from immunogenicity, difficulties in mimicking native microenvironments, and maintaining the mechanical and biochemical (i.e., biomechanical) properties of native organs/tissues. The emergence of decellularized extracellular matrix (ECM)-derived biomaterials provides an attractive solution to overcome these hurdles since decellularized ECM provides a nonimmune environment with native three-dimensional structures and bioactive components. More importantly, decellularized ECM can be generated from the tissue of interest, such as the heart, and keep its native macro- and microstructure and tissue-specific composition. These decellularized cardiac matrices/scaffolds can then be reseeded using cardiac cells, and the resulting recellularized construct is considered an ideal choice for regenerating functional organs/tissues. Nonetheless, the decellularization process must be optimized and depends on tissue type, age, and functional goal. Although most decellularization protocols significantly reduce immunogenicity and deliver a matrix that maintains the tissue macrostructure, suboptimal decellularization can change ECM composition and microstructure, which affects the biomechanical properties of the tissue and consequently changes cell-matrix interactions and organ function. Herein, we review methods of decellularization, with particular emphasis on cardiac tissue, and how they can affect the biomechanics of the tissue, which in turn determines success of reseeding and in vivo viability. Moreover, we review recent developments in decellularized ECM-derived cardiac biomaterials and discuss future perspectives.


Assuntos
Matriz Extracelular , Alicerces Teciduais , Materiais Biocompatíveis , Fenômenos Biomecânicos , Matriz Extracelular/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159212

RESUMO

The great plasticity of cardiac fibroblasts allows them to respond quickly to myocardial injury and to contribute to the subsequent cardiac remodeling. Being the most abundant cell type (in numbers) in the heart, and a key participant in the several phases of tissue healing, the cardiac fibroblast is an excellent target for treating cardiac diseases. The development of cardiac fibroblast-specific approaches have, however, been difficult due to the lack of cellular specific markers. The development of genetic lineage tracing tools and Cre-recombinant transgenics has led to a huge acceleration in cardiac fibroblast research. Additionally, the use of novel targeted delivery approaches like nanoparticles and modified adenoviruses, has allowed researchers to define the developmental origin of cardiac fibroblasts, elucidate their differentiation pathways, and functional mechanisms in cardiac injury and disease. In this review, we will first characterize the roles of fibroblasts in the different stages of cardiac repair and then examine novel techniques targeting fibroblasts post-ischemic heart injury.


Assuntos
Traumatismos Cardíacos , Miocárdio , Diferenciação Celular , Fibroblastos/metabolismo , Coração , Traumatismos Cardíacos/metabolismo , Humanos , Isquemia/metabolismo , Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...