Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(13): 2887-2891, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38421305

RESUMO

Drop tower experiments have been performed to study droplet jump from a particle bed across a wide range of fluid viscosities. Here the droplet jumps from the particle bed in response to the apparent step reduction from terrestrial gravity to microgravity when the experiment is dropped and enters free fall. The presence of a particle layer has been found to affect contact line dissipation and the overall jumping behavior of droplets. Additionally, the study has identified the impact of the Ohnesorge number (Oh) on droplet morphology. The investigation has yielded results that not only validate a modified version of the spring-mass-damper model for droplet rebound [Jha et al., Soft Matter, 2020, 16, 7270] but also extend its applicability to previously unexplored initial conditions. In particular, the model predicts droplet jump time and velocity. Moreover, the presence of particle layers has been found to effectively eliminate contact line dissipation without introducing substantial additional forms of dissipation. Experiments have been conducted at the Dryden Drop Tower facility at Portland State University. Particle beds have been constructed using polyethylene and polystyrene poly-dispersed spheres with diameters ranging from 125-150 µm and 600-1000 µm, respectively. The beds have been created by depositing a thin layer of particles on a glass substrate. The experimental conditions have allowed the exploration of a large parameter space of Bo0 1.8-8.6, We 0.05-1.40, and Oh 0.001-1.900.

2.
Bioinspir Biomim ; 19(1)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37939394

RESUMO

Pinniped vibrissae possess a unique and complex three-dimensional topography, which has beneficial fluid flow characteristics such as substantial reductions in drag, lift, and vortex induced vibration. To understand and leverage these effects, the downstream vortex dynamics must be studied. Dye visualization is a traditional qualitative method of capturing these downstream effects, specifically in comparative biological investigations where complex equipment can be prohibitive. High-fidelity numerical simulations or experimental particle image velocimetry are commonplace for quantitative high-resolution flow measurements, but are computationally expensive, require costly equipment, and can have limited measurement windows. This study establishes a method for extracting quantitative data from standard dye visualization experiments on seal whisker geometries by leveraging novel but intuitive computer vision techniques, which maintain simplicity and an advantageous large experimental viewing window while automating the extraction of vortex frequency, position, and advection. Results are compared to direct numerical simulation (DNS) data for comparable geometries. Power spectra and Strouhal numbers show consistent behavior between methods for a Reynolds number of 500, with minima at the canonical geometry wavelength of 3.43 and a peak frequency of 0.2 for a Reynolds number of 250. The vortex tracking reveals a clear increase in velocity from roll-up to 3.5 whisker diameters downstream, with a strong overlap with the DNS data but shows steady results beyond the limited DNS window. This investigation provides insight into a valuable bio-inspired engineering model while advancing an analytical methodology that can readily be applied to a broad range of comparative biological studies.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Vibrissas , Vibração , Simulação por Computador
3.
Sci Rep ; 10(1): 10505, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601328

RESUMO

Performance of solar PV diminishes with the increase in temperature of the solar modules. Therefore, to further facilitate the reduction in cost of photovoltaic energy, new approaches to limit module temperature increase in natural ambient conditions should be explored. Thus far only approaches based at the individual panel level have been investigated, while the more complex, systems approach remains unexplored. Here, we perform the first wind tunnel scaled solar farm experiments to investigate the potential for temperature reduction through system-level flow enhancement. The percentage of solar irradiance converted into electric power depends upon module efficiency, typically less than 20%. The remaining 80% of solar irradiance is converted into heat, and thus improved heat removal becomes an important factor in increasing performance. Here, We investigate the impact of module inclination on system-level flow and the convective heat transfer coefficient. Results indicate that significant changes in the convective heat transfer coefficient are possible, based on wind direction, wind speed, and module inclination. We show that 30-45% increases in convection are possible through an array-flow informed approach to layout design, leading to a potential overall power increase of ~5% and decrease of solar panel degradation by +0.3%/year. The proposed method promises to augment performance without abandoning current PV panel designs, allowing for practical adoption into the existing industry. Previous models demonstrating the sensitivity to convection are validated through the wind tunnel results, and a new conceptual framework is provided that can lead to new means of solar PV array optimization.

4.
Sci Rep ; 8(1): 13163, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177710

RESUMO

To improve the performance of solar photovoltaic devices one should mitigate three types of losses: optical, electrical and thermal. However, further reducing the optical and electrical losses in modern photovoltaic devices is becoming increasingly costly. Therefore, there is a rising interest in minimizing the thermal losses. These correspond to the reduction in electrical power output resultant of working at temperatures above 25 °C and the associated accelerated aging. Here, we quantify the impact of all possible strategies to mitigate thermal losses in the case of the mainstream crystalline silicon technology. Results indicate that ensuring a minimum level of conductive/convective cooling capabilities is essential. We show that sub-bandgap reflection and radiative cooling are strategies worth pursuing and recommend further field testing in real-time operating conditions. The general method we propose is suitable for every photovoltaic technology to guide the research focused on reducing thermal losses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...