Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(23): 5335-5342, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272941

RESUMO

We employed microwave spectroscopy to investigate the 1:1 complexes of hexafluorobenzene with trimethylamine and quinuclidine, respectively. These complexes exhibit a C3v symmetry and are stabilized by nitrogen lone pair···π-hole interactions along the C3 axes. The N···π-center distances were determined to be 3.110(1) and 3.040(2) Å, respectively, which are shorter than that of hexafluorobenzene-ammonia at 3.2685(3) Å. Additionally, the strength of the intermolecular interaction increases with cluster size. While it was initially expected that the electron-donating effect of alkyl groups was responsible for changing the N···π interaction, the symmetry-adapted perturbation theory analysis revealed that, from hexafluorobenzene-ammonia to both hexafluorobenzene-alkylamines, electrostatic interaction actually decreases while dispersion interaction increases and becomes dominant. Interestingly, dispersion interaction decreases while electrostatic interaction increases from C6F6-N(CH3)3 to C6F6-NC7H13. The splitting pattern of the spectra indicates hexafluorobenzene rotates freely relative to its partners along the axis of the N···π-hole interactions.

2.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901823

RESUMO

Hydrogen bonds and stacking interactions are pivotal in biological mechanisms, although their proper characterisation within a molecular complex remains a difficult task. We used quantum mechanical calculations to characterise the complex between caffeine and phenyl-ß-D-glucopyranoside, in which several functional groups of the sugar derivative compete with each other to attract caffeine. Calculations at different levels of theory (M06-2X/6-311++G(d,p) and B3LYP-ED=GD3BJ/def2TZVP) agree to predict several structures similar in stability (relative energy) but with different affinity (binding energy). These computational results were experimentally verified by laser infrared spectroscopy, through which the caffeine·phenyl-ß-D-glucopyranoside complex was identified in an isolated environment, produced under supersonic expansion conditions. The experimental observations correlate with the computational results. Caffeine shows intermolecular interaction preferences that combine both hydrogen bonding and stacking interactions. This dual behaviour had already been observed with phenol, and now with phenyl-ß-D-glucopyranoside, it is confirmed and maximised. In fact, the size of the complex's counterparts affects the maximisation of the intermolecular bond strength because of the conformational adaptability given by the stacking interaction. Comparison with the binding of caffeine within the orthosteric site of the A2A adenosine receptor shows that the more strongly bound caffeine·phenyl-ß-D-glucopyranoside conformer mimics the interactions occurring within the receptor.


Assuntos
Cafeína , Glucose , Conformação Molecular , Fenóis , Espectrofotometria Infravermelho , Teoria Quântica , Ligação de Hidrogênio
3.
J Phys Chem Lett ; 14(1): 207-213, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36583611

RESUMO

π-Stacking is a common descriptor for face-to-face attractive forces between aromatic hydrocarbons. However, the physical origin of this interaction remains debatable. Here we examined π-stacking in a model homodimer formed by two thiol-substituted naphthalene rings. Two isomers of the 2-naphthalenethiol dimer were discovered using rotational spectroscopy, sharing a parallel-displaced crossed orientation and absence of thiol-thiol hydrogen bonds. One of the isomers presents C2 symmetry, structurally analogous to the global minimum of the naphthalene dimer. The experimental data were rationalized with molecular orbital calculations, revealing a shallow potential energy surface. Noncovalent interactions are dominated by dispersion forces according to SAPT energy decomposition. In addition, the reduced electronic density shows a diffuse and extended region of inter-ring interactions, compatible with the description of π-stacking as a competition between dispersion and Pauli repulsion forces.

4.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566169

RESUMO

Benzenesulfonamides are a class of molecules of extreme interest in the biochemical field because many of them are active against a variety of diseases. In this work, the pharmacophoric group benzensulfonamide, its derivatives para-toluensulfonamide and ortho-toluensulfonamide, and the bioactive molecule sulfanilamide, were investigated using rotational spectroscopy to determine their conformations and the influence of different substituents on their structures. For all species, the hyperfine structure due to the 14N atom was analyzed, and this provided crucial information for the unambiguous identification of the observed conformation of all molecules. In addition, for ortho-toluensulfonamide, the vibration-rotation hyperfine structure related to the methyl torsion was analyzed, and the methyl group rotation barrier was determined. For benzensulfonamide, partial rS and r0 structures were established from the experimental rotational constants of the parent and two deuterated isotopic species. In all compounds except ortho-toluensulfonamide, the amino group of the sulfonamide group lies perpendicular to the benzene plane with the aminic hydrogens eclipsing the oxygen atoms. In ortho-toluensulfonamide, where weak attractive interactions occur between the nitrogen lone pair and the methyl hydrogen atoms, the amino group lies in a gauche orientation, retaining the eclipsed configuration with respect to the SO2 frame. A comparison of the geometrical arrangements found in the PDB database allowed us to understand that the bioactive conformations are different from those found in isolated conditions. The conformations within the receptor are reached with an energy cost, which is balanced by the interactions established in the receptor.


Assuntos
Benzeno , Sulfonamidas , Conformação Molecular , Rotação , Análise Espectral
5.
Chemphyschem ; 23(6): e202100808, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35102679

RESUMO

Broadband microwave spectra were recorded over the 2-18 GHz frequency range for a series of four model aromatic components of lignin; namely, guaiacol (ortho-methoxy phenol, G), syringol (2,6-dimethoxy phenol, S), 4-methyl guaiacol (MG), and 4-vinyl guaiacol (VG), under jet-cooled conditions in the gas phase. Using a combination of 13 C isotopic data and electronic structure calculations, distortions of the phenyl ring by the substituents on the ring are identified. In all four molecules, the rC(1)-C(6) bond between the two substituted C-atoms lengthens, leading to clear bond alternation that reflects an increase in the phenyl ring resonance structure with double bonds at rC(1)-C(2) , rC(3)-C(4) and rC(5)-C(6) . Syringol, with its symmetric methoxy substituents, possesses a microwave spectrum with tunneling doublets in the a-type transitions associated with H-atom tunneling. These splittings were fit to determine a barrier to hindered rotation of the OH group of 1975 cm-1 , a value nearly 50 % greater than that in phenol, due to the presence of the intramolecular OH⋅⋅⋅OCH3 H-bonds at the two equivalent planar geometries. In 4-methyl guaiacol, methyl rotor splittings are observed and used to confirm and refine an earlier measurement of the three-fold barrier V3 =67 cm-1 . Finally, 4-vinyl guaiacol shows transitions due to two conformers differing in the relative orientations of the vinyl and OH groups.


Assuntos
Lignina , Fenóis , Micro-Ondas , Fenóis/química , Rotação
6.
Chemistry ; 28(1): e202103636, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854511

RESUMO

One of the most fascinating questions in chemistry is why nature chose CGAT as the alphabet of life. Very likely, such selection was the result of multiple factors and a long period of refinement. Here, we explore how the intermolecular interactions influenced such process, by characterizing the formation of dimers between adenine, theobromine and 4-aminopyrimidine. Using a combination of mass-resolved excitation spectroscopy and DFT calculations, we determined the structure of adenine-theobromine and 4-aminopyrimidine-theobromine dimers. The binding energy of these dimers is very close to the canonical adenine-thymine nucleobases. Likewise, the dimers are able to adopt Watson-Crick conformations. These findings seem to indicate that there were many options available to build the first versions of the informational polymers, which also had to compete with other molecules, such as 4-aminopyrimidine, which does not have a valid attaching point for a saccharide. For some reason, nature did not select the most strongly-bonded partners or if it did, such proto-bases were later replaced by the nowadays canonical CGAT.


Assuntos
Timina , Ligação de Hidrogênio , Lasers , Análise Espectral
7.
Phys Chem Chem Phys ; 23(31): 16915-16922, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34337625

RESUMO

The interaction between carbon dioxide and planar carboxylic acids has been investigated through the analysis of the microwave spectrum of the acrylic acid·CO2 complex and quantum chemical modeling of the R-COOH·(CO2)1,16 clusters, where R = H, CH2CH. As regards the 1 : 1 compounds, two species, involving the s-cis and s-trans conformers of acrylic acid were observed. For both of them, a similar bidentate interaction arises between the carbonyl group of CO2 and the carboxylic group of the organic acid, leading to the formation of a planar six-membered ring. The binding energy is estimated to be De ≃ 21 kJ mol-1, 1/3 being the energy contributions of the tetrel to hydrogen bonds, respectively. In the 1 : 16 clusters, the ring arrangement is broken, allowing for the interaction of the acid with several CO2 molecules. The CO2 molecules completely surround formic acid, whereas, in the case of acrylic acid, they tend to avoid the allyl chain.

8.
Angew Chem Int Ed Engl ; 60(31): 16894-16899, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34028158

RESUMO

The role of non-covalent interactions (NCIs) has broadened with the inclusion of new types of interactions and a plethora of weak donor/acceptor partners. This work illustrates the potential of chirped-pulse Fourier transform microwave technique, which has revolutionized the field of rotational spectroscopy. In particular, it has been exploited to reveal the role of NCIs' in the molecular self-aggregation of difluoromethane where a pentamer, two hexamers and a heptamer were detected. The development of a new automated assignment program and a sophisticated computational screening protocol was essential for identifying the homoclusters in conditions of spectral congestion. The major role of dispersion forces leads to less directional interactions and more distorted structures than those found in polar clusters, although a detailed analysis demonstrates that the dominant interaction energy is the pairwise interaction. The tetramer cluster is identified as a structural unit in larger clusters, representing the maximum expression of bond between dimers.

9.
Phys Chem Chem Phys ; 23(15): 9121-9129, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885116

RESUMO

When hydrogen is completely replaced by fluorine, arenes become prone to forming a lone pairπ-hole non-covalent bond with ligands presenting electron rich regions. Such a species is ammonia, which confirms this behavior engaging its lone pair as the electron donor counterpart in the 1 : 1 adducts with hexafluorobenzene and pentafluoropyridine. In this work, the geometrical parameters of the interaction have been unambiguously identified through the detection, by means of Fourier transform microwave spectroscopy, of the rotational spectra of both normal species and their 15NH3 isotopologues. An accurate analysis of the experimental data, including internal dynamics effects, endorsed by quantum chemical calculations, both with topological analysis and energy decomposition method, extended to the hydrogenated arenes and their water complexes, proved the ability of ammonia to create a stronger and more flexible lone pairπ-hole interaction than water. Interestingly, the higher binding energies of the ammonia lone pairπ-hole interactions correspond to larger intermolecular distances.

10.
J Phys Chem Lett ; 12(4): 1352-1359, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33507076

RESUMO

Rotational spectroscopy provides the most powerful means of identifying molecules of biological interest in the interstellar medium (ISM), but despite their importance, the detection of carbohydrates has remained rather elusive. Here, we present a comprehensive Fourier transform rotational spectroscopic study of elusive erythrulose, a sugar building block likely to be present in the ISM, employing a novel method of transferring the hygroscopic oily carbohydrate into the gas phase. The high sensitivity of the experiment allowed the rotational spectra of all monosubstituted isotopologue species of 13C-12C3H8O4 to be recorded, which, together with quantum chemical calculations, enabled us to determine their equilibrium geometries (reSE) with great precision. Searches employing the new experimental data for erythrulose have been undertaken in different ISM regions, so far including the cold areas Barnard 1, the pre-stellar core TMC-1, Sagittarius B2. Although no lines of erythrulose were found, this data will serve to enable future searches and possible detections in other ISM regions.


Assuntos
Meio Ambiente Extraterreno/química , Tetroses/química , Fenômenos Astronômicos , Teoria da Densidade Funcional , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Phys Chem Chem Phys ; 22(27): 15759-15768, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32627788

RESUMO

Understanding the molecular basis of the appearance of life on Earth is an exciting research field. Many factors may have influenced the election of the molecules used by living beings and evolution may have modified those original compounds. In an attempt to understand the role played by intermolecular interactions in the election of CGAT as the alphabet of life, we present here a thorough experimental and computational study on the interaction of theobromine with water. Theobromine is a xanthine derivative, structurally related to the nucleobases, and also present in many living beings. The experimental results demonstrate that the most stable isomer of theobromine-water was formed and detected in supersonic expansions. This isomer very well resembles the structure of the dimers between nucleobases and water, offering similar values of binding energy. A comparison between the results obtained for theobromine-water with those reported in the literature for monohydrates of nucleobases is also offered.


Assuntos
DNA/química , Teobromina/química , Água/química , Teoria da Densidade Funcional , Dimerização , Estrutura Molecular , Propriedades de Superfície
12.
Phys Chem Chem Phys ; 22(24): 13440-13455, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519689

RESUMO

The prototropic tautomeric equilibrium in 2-hydroxypyridine serves as a prototype model for the study of nucleobases' behaviour. The position of such an equilibrium in parent and chlorine monosubstituted 2-hydroxypyridine compounds in the gas phase was determined using synchrotron based techniques. The lactim tautomer is dominant for the 5- and 6-substituted compounds, whereas the parent, 3- and 4-substituted isomers have comparable populations for both tautomers. Information was obtained by measuring valence band and core level photoemission spectra at the chlorine L-edge and carbon, nitrogen, and oxygen K-edges. The effect of chlorine on the core ionization potentials of the atoms in the heterocycle was evaluated and reasonable agreement with a simple model was obtained. Basic considerations of resonance structures correctly predicts the tautomeric equilibrium for the 5- and 6-substituted compounds. The vibrationally resolved structure of the low energy portion of the valence band photoionization spectra is assigned based on quantum-chemical calculations of the neutral and charged species followed by simulation of the vibronic structure. It is shown that the first ionization occurs from a π orbital of similar shape for both tautomers. In addition, the highly distinctive vibronic structure observed just above the first ionization of the lactim, for three of the five species investigated, is assigned to the second ionization of the lactam.

13.
J Phys Chem A ; 124(18): 3601-3608, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32279497

RESUMO

The hydrogen-bonded complex between acrylonitrile (CH2═CHCN) and methanol has been characterized spectroscopically in the millimeter wave range (59.6-74.4 GHz) using a free jet absorption millimeter wave spectrometer. Precise values of the rotational and centrifugal distortion constants were obtained from the measured frequencies of the complex of acrylonitrile with CH3OH and CD3OD. The analysis of the splittings of the rotational lines due to the hindered internal rotation of the methanol methyl group led to the determination of a V3 value of 221.9(7) and 218(5) cm-1 for the complexes of CH3OH and CD3OD, respectively, and these values are about 40% lower than that of free methanol. The structure of the observed conformation is in agreement with the global minimum determined at the MP2/aug-cc-pVTZ level of calculation, and the counterpoise corrected intermolecular binding energy, obtained at the same theoretical level, is De = 26.3 kJ mol-1.

14.
ACS Cent Sci ; 6(2): 293-303, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32123748

RESUMO

The constitution, configuration, and flexibility of the core sugars of DNA molecules alter their function in diverse roles. Conformational itineraries of the ribofuranosides (fs) have long been known to finely determine rates of processing, yet we also know that, strikingly, semifunctional DNAs containing pyranosides (ps) or other configurations can be created, suggesting sufficient but incompletely understood plasticity. The multiple conformers involved in such processes are necessarily influenced by context and environment: solvent, hosts, ligands. Notably, however, to date the unbiased, "naked" conformers have not been experimentally determined. Here, the inherent conformational biases of DNA scaffold deoxyribosides in unsolvated and solvated forms have now been defined using gas-phase microwave and solution-phase NMR spectroscopies coupled with computational analyses and exploitation of critical differences between natural-abundance isotopologues. Serial determination of precise, individual spectra for conformers of these 25 isotopologues in alpha (α-d) and beta (ß-d); pyrano (p) and furano (f) methyl 2-deoxy-d-ribosides gave not only unprecedented atomic-level resolution structures of associated conformers but also their quantitative populations. Together these experiments revealed that typical 2E and 3E conformations of the sugar found in complex DNA structures are not inherently populated. Moreover, while both OH-5' and OH-3' are constrained by intramolecular hydrogen bonding in the unnatural αf scaffold, OH-3' is "born free" in the "naked" lowest lying energy conformer of natural ßf. Consequently, upon solvation, unnatural αf is strikingly less perturbable (retaining 2T1 conformation in vacuo and water) than natural ßf. Unnatural αp and ßp ribosides also display low conformational perturbability. These first experimental data on inherent, unbiased conformers therefore suggest that it is the background of conformational flexibility of ßf that may have led to its emergence out of multiple possibilities as the sugar scaffold for "life's code" and suggest a mechanism by which the resulting freedom of OH-3' (and hence accessibility as a nucleophile) in ßf may drive preferential processing and complex structure formation, such as replicative propagation of DNA from 5'-to-3'.

15.
Phys Chem Chem Phys ; 21(42): 23559-23566, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31620739

RESUMO

Direct spectroscopic evidence of a reaction occurring between acrolein and water and involving the exchange of an oxygen atom has been obtained by characterizing the non-covalently bound water complexes and their isotopic forms, via rotational spectroscopy. The experimental geometries of the binary and ternary water complexes have been determined, and other stationary points on the reaction path have been characterized using ab initio quantum chemical methods at the MP2/6-311++G(d,p) level. These results can enhance the understanding of the water-mediated atmospherically important reactions involving acrolein.

16.
Chemistry ; 25(62): 14230-14236, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31478578

RESUMO

Intermolecular interactions are difficult to model, especially in systems formed by multiple interactions. Such is the case of caffeine-phenol. Structural data has been extracted by using mass-resolved excitation spectroscopy and double resonance techniques. Then the predictions of seven different computational methods have been explored to discover structural and energetic discrepancies between them that may even result in different assignments of the system. The results presented herein highlight the difficulty of constructing functionals to model systems with several competing interactions, and raise awareness of problems with assignments of complex systems with limited experimental information that rely exclusively on energetic data.

17.
Chemistry ; 25(43): 10172-10178, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166628

RESUMO

Bond length alternation is a chemical phenomenon in benzene rings fused to other rings, which has been mainly predicted theoretically. Its physical origin is still not clear and has generated discussion. Here, by using a strategy that combines microwave spectroscopy, custom-made synthesis and high-level ab initio calculations, we demonstrate that this phenomenon is clearly observed in the prototype indazole molecule isolated in the gas phase. The 1H-indazole conformer was detected by rotational spectroscopy, and its 17 isotopologues resulting from single and double heavy atom substitution (13 C and 15 N) were also unambiguously observed. Several experimental structures were determined and, in particular, the most useful semi-experimental equilibrium structure (re SE ), allowed determination of the heavy atom bond lengths to milli-Ångstrom precision. The experimentally determined bond length alternation is estimated to correspond to 60:40 contributions from the two resonant forms of 1H-indazole.

18.
J Phys Chem Lett ; 10(12): 3339-3345, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31141365

RESUMO

Understanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated ß-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more effective than for the ß derivative. Markedly, the main conformers found in the gas phase and solution are characterized by the lack of the stabilizing anomeric effect. From a mechanistic perspective, both rotational spectroscopy and solid-state nuclear magnetic resonance (NMR) corroborate that αâ€¯â†”â€¯ß or furanose ↔ pyranose interconversions are prevented in the gas phase. Combining microwave (MW) and NMR results provides a powerful method for unraveling the water role in the conformational preferences of challenging molecules, such as flexible monosaccharides.

19.
Angew Chem Int Ed Engl ; 58(25): 8437-8442, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-30997948

RESUMO

Rotational spectra of several difluoromethane-water adducts have been observed using two broadband chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometers. The experimental structures of (CH2 F2 )⋅⋅⋅(H2 O)2 , (CH2 F2 )2 ⋅⋅⋅(H2 O), (CH2 F2 )⋅⋅⋅(H2 O)3 , and (CH2 F2 )2 ⋅⋅⋅(H2 O)2 were unambiguously identified with the aid of 18 isotopic substituted species. A subtle competition between hydrogen, halogen, and carbon bonds is observed and a detailed analysis was performed on the complex network of non-covalent interactions which stabilize each cluster. The study shows that the combination of stabilizing contact networks is able to reinforce the interaction strength through a cooperative effect, which can lead to large stable oligomers.

20.
Front Chem ; 6: 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520356

RESUMO

We describe an experimental and quantum chemical study for the accurate determination of the conformational space of small molecular systems governed by intramolecular non-covalent interactions. The model systems investigated belong to the biological relevant aminoalcohol's family, and include 2-amino-1-phenylethanol, 2-methylamino-1-phenylethanol, noradrenaline, adrenaline 2-aminoethanol, and N-methyl-2-aminoethanol. For the latter molecule, the rotational spectrum in the 6-18 and 59.6-74.4 GHz ranges was recorded in the isolated conditions of a free jet expansion. Based on the analysis of the rotational spectra, two different conformational species and 11 isotopologues were observed and their spectroscopic constants, including 14N-nuclear hyperfine coupling constants and methyl internal rotation barriers, were determined. From the experimental data a structural determination was performed, which was also used to benchmark accurate quantum chemical calculations on the whole conformational space. Atom in molecules and non-covalent interactions theories allowed the characterization of the position of the intramolecular non-covalent interactions and the energies involved, highlighting the subtle balance responsible of the stabilization of all the molecular systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...