Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 615770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912473

RESUMO

In vitro studies indicate IFNγ is central to Chlamydia trachomatis (Ct) eradication, but its function may be compromised by anaerobes typically associated with bacterial vaginosis (BV), a frequent co-morbidity in women with Ct. Here we investigated the associations between natural clearance of cervical Ct infection, the vaginal microbiome, and the requirements for IFNγ by evaluating the vaginal microbial and cytokine composition of Ct treatment visit samples from women who cleared Ct infection in the interim between their Ct screening and Ct treatment visit. The pilot cohort was young, predominantly African American, and characterized by a high rate of BV that was treated with metronidazole at the Ct screening visit. The rate of natural Ct clearance was 23.6% by the Ct treatment visit (median 9 days). 16S rRNA gene sequencing revealed that metronidazole-treated women who had a Lactobacillus spp.-dominant vaginal microbiota (CST 2 or 3) at the Ct treatment visit, were more prevalent in the Ct clearing population than the non-clearing population (86% v. 50%). L. iners (CST2) was the major Lactobacillus spp. present in Ct clearers, and 33% still remained anaerobe-dominant (CST1). Vaginal IFNγ levels were not significantly different in Ct clearers and non-clearers and were several logs lower than that required for killing Ct in vitro. An expanded panel of IFNγ-induced and proinflammatory cytokines and chemokines also did not reveal differences between Ct clearers and non-clearers, but, rather, suggested signatures better associated with specific CSTs. Taken together, these findings suggest that BV-associated bacteria may impede Ct clearance, but a Lactobacillus spp.-dominant microbiome is not an absolute requirement to clear. Further, IFNγ may be required at lower concentrations than in vitro modeling indicates, suggesting it may act together with other factors in vivo. Data also revealed that the vaginal bacteria-driven inflammation add complexity to the genital cytokine milieu, but changes in this microbiota may contribute to, or provide cytokine biomarkers, for a shift to Ct clearance.


Assuntos
Chlamydia trachomatis , Microbiota , Chlamydia trachomatis/genética , Feminino , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética , Vagina
2.
Acta Biomater ; 113: 279-288, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32623098

RESUMO

Stable and mature vascular formation is a current challenge in engineering functional tissues. Transient, non-viral gene delivery presents a unique platform for delivering genetic information to cells for tissue engineering purposes and to restore blood flow to ischemic tissue. The formation of new blood vessels can be induced by upregulation of hypoxia-inducible factor-1α (HIF-1), among other factors. We hypothesized that biodegradable polymers could be used to efficiently deliver the HIF-1α gene to human adipose-derived stromal/stem cells (hASCs) and that this treatment could recruit an existing endogenous endothelial cell population to induce angiogenesis in a 3D cell construct in vitro. In this study, end-modified poly(ß-amino ester) (PBAE) nanocomplexes were first optimized for transfection of hASCs and a new biodegradable polymer with increased hydrophobicity and secondary amine structures, N'-(3-aminopropyl)-N,N-dimethylpropane-1,3-diamine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol), was found to be most effective. Optimal PBAE nanocomplexes had a hydrodynamic diameter of approximately 140 nm and had a zeta potential of 30 mV. The PBAE polymer self-assembled with HIF-1α plasmid DNA and treatment of hASCs with these nanocomplexes induced 3D vascularization. Cells transfected with this polymer-DNA complex were found to have 106-fold upregulation HIF-1α expression, an approximately 2-fold increase in secreted VEGF, and caused the formation of vessel tubules compared to an untransfected control. These gene therapy biomaterials may be useful for regenerative medicine. STATEMENT OF SIGNIFICANCE: Not only is the formation of stable vasculature a challenge for engineering human tissues in vitro, but it is also of valuable interest to clinical applications such as peripheral artery disease. Previous studies using HIF-1α to induce vascular formation have been limited by the necessity of hypoxic chambers. It would be advantageous to simulate endogenous responses to hypoxia without the need for physical hypoxia. In this study, 3D vascular formation was shown to be inducible through non-viral gene delivery of HIF-1α with new polymeric nanocomplexes. A biodegradable polymer N'-(3-aminopropyl)-N,N-dimethylpropane-1,3-diamine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) demonstrates improved transfection of human adipose-derived stem cells. This nanobiotechnology could be a promising strategy for the creation of vasculature for tissue engineering and clinical applications.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Subunidade alfa do Fator 1 Induzível por Hipóxia , Tecido Adiposo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células-Tronco , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...