Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770187

RESUMO

The Small Punch Creep-Recovery Test (SPCRT) is a novel miniature test used to estimate the viscoelastic properties of polymers and biomaterials. The current investigation related to the SPCRT is limited to Finite Element Method (FEM) simulations and experimental tests on PVC. The aim of this investigation was focused on: (i) extending the experimental tests to other polymers with dissimilar viscoelastic properties; (ii) deepening the influence of non-linear viscoelastic properties in the estimation capabilities of the SPCRT; and (iii) developing a numerical methodology to estimate and take into account the viscoelastic recovery produced during the unloading step of compressive creep-recovery tests (CCRT) and SPCRTs. The experimental tests (CCRTs and SPCRTs) were done on polyethylene PE 500, polyoxymethylene POM C, nylon PA 6, and polytetrafluoroethylene (PTFE), with a range of creep loads, in the case of CCRTs, in the whole elastic regime and the surroundings of the yield strength of each material. The experimental results confirmed that the SPCRT was an accurate and reliable testing method for linear viscoelastic polymers. For a non-linear viscoelastic behavior, SPCRT estimated the viscoelastic properties obtained from CCRTs for creep loads near the yield strength of the polymer, which corresponded with large-amplitude viscoelastic properties in dynamic creep testing. In order to consider the viscoelastic recovery generated in the unloading step of CCRTs and SPCRTs, a Maxwell-Wiechert model with two branches was used, simulating the different steps of the experimental tests, and solving numerically the differential equation of the Maxwell-Wiechert model with the Runge-Kutta-Fehlberg (RKF) numerical method. The coefficients of the elements of the Maxwell-Wiechert model were estimated approaching the straining curve of the recovery step of the simulation with the same curve registered on each experimental test. Experimental CCRTs with different unloading times demonstrated that the use of this procedure derived in no influence of the unloading step time in the viscoelastic properties estimation.

2.
Materials (Basel) ; 13(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291822

RESUMO

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.

3.
Materials (Basel) ; 12(24)2019 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817983

RESUMO

Cold expansion technology is a cold-forming process widely used in aeronautics to extend the fatigue life of riveted and bolted holes. During this process, an oversized mandrel is pushed through the hole in order to yield it and generate compressive residual stresses contributing to the fatigue life extension of the hole. In this paper, a parametric analysis of the mandrel geometrical data (inlet angle straight zone length and diametric interference) and their influence on the residual stresses was carried out using a finite element method (FEM). The obtained results were compared with the conclusions presented in a previous parametric FEM analysis on the influence of the swage geometry in a swaging cold-forming process of gun barrels. This process could be considered, in a simplified way, as a scale-up of the cold expansion process of small holes, and this investigation demonstrated the influence of the diameter ratio (K) on the relation between the mandrel or swage geometry and the residual stresses obtained after the cold-forming process.

4.
Materials (Basel) ; 11(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134585

RESUMO

The load⁻deflection curve acquired from the Small Punch Test (SPT) is used to obtain the mechanical properties of materials using different correlation methods. The scattering level of these regressions tends to be high when a wide set of materials is analyzed. In this study, a correlation method based on a specific slope of the SPT curve was proposed to reduce scattering. Assuming the Ramberg⁻Osgood hardening law, the dependence of the SPT curve slope on the yield strength and the hardening coefficient is demonstrated by numerical simulations (FEM). Considering that the ultimate tensile strength could be obtained from the hardening coefficient, a response surface of the ultimate tensile strength with the yield strength and SPT curve slope, along with its equation, is presented for steel alloys. A summary of steel mechanical properties, based on the Boiler and Pressure Vessel Code (BPVC) and limited to yield strengths lower than 1300 MPa, is shown to select a set of experimental tests (tensile tests and SPTs) for which the range is completely covered. This experimental analysis validates the previous FEM analyses and the validity of the proposed correlation method, which shows more accurate correlations compared to the current methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...