Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 11(11): 3832-3850, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186381

RESUMO

Elimination of senescent cells (SnC) is anti-atherogenic, but the specific contribution of senescent vascular endothelial cells (EC) is unknown. We inactivated angiopoietin like-2 (angptl2), a marker of SnEC and a pro-atherogenic cytokine in LDLr-/-, hApoB100+/+ atherosclerotic (ATX) mice. Three months after a single vascular delivery of a small hairpin (sh)Angptl2 in 3-month old ATX mice using an adeno-associated virus serotype 1 (AAV1), aortic atheroma plaque progression was slowed by 58% (p<0.0001). In the native aortic endothelium, angptl2 expression was decreased by 80%, in association with a reduced expression of p21, a cyclin-dependent kinase inhibitor overexpressed in growth-arrested SnC. Endothelial activation was reduced (lower Icam-1, Il-1ß and Mcp-1 expression), decreasing monocyte Cd68 expression in the endothelium. One week post-injection, the ratio Bax/Bcl2 increased in the endothelium only, suggesting that angptl2+/p21+ SnEC were eliminated by apoptosis. Four weeks post-injection, the endothelial progenitor marker Cd34 increased, suggesting endothelial repair. In arteries of atherosclerotic patients, we observed a strong correlation between p21 and ANGPTL2 (r=0.727, p=0.0002) confirming the clinical significance of angptl2-associated senescence. Our data suggest that therapeutic down-regulation of vascular angptl2 leads to the clearance of SnEC by apoptosis, stimulates endothelial repair and reduces atherosclerosis.


Assuntos
Proteínas Semelhantes a Angiopoietina/metabolismo , Apoptose/fisiologia , Aterosclerose/metabolismo , Senescência Celular/fisiologia , Doença da Artéria Coronariana/metabolismo , Células Endoteliais/metabolismo , Idoso , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Aorta Torácica/metabolismo , Aterosclerose/genética , Doença da Artéria Coronariana/genética , Modelos Animais de Doenças , Progressão da Doença , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
2.
Am J Physiol Heart Circ Physiol ; 314(6): H1214-H1224, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29451817

RESUMO

Aging is a modern concept: human life expectancy has more than doubled in less than 150 yr in Western countries. Longer life span, however, reveals age-related diseases, including cerebrovascular diseases. The vascular system is a prime target of aging: the "wear and tear" of large elastic arteries exposed to a lifelong pulsatile pressure causes arterial stiffening by fragmentation of elastin fibers and replacement by stiffer collagen. This arterial stiffening increases in return the amplitude of the pulse pressure (PP), its wave penetrating deeper into the microcirculation of low-resistance, high-flow organs such as the brain. Several studies have associated peripheral arterial stiffness responsible for the sustained increase in PP, with brain microvascular diseases such as cerebral small vessel disease, cortical gray matter thinning, white matter atrophy, and cognitive dysfunction in older individuals and prematurely in hypertensive and diabetic patients. The rarefaction of white matter is also associated with middle cerebral artery pulsatility that is strongly dependent on PP and artery stiffness. PP and brain damage are likely associated, but the sequence of mechanistic events has not been established. Elevated PP promotes endothelial dysfunction that may slowly develop in parallel with the accumulation of proinflammatory senescent cells and oxidative stress, generating cerebrovascular damage and remodeling, as well as brain structural changes. Here, we review data suggesting that age-related increased peripheral artery stiffness may promote the penetration of a high PP to cerebral microvessels, likely causing functional, structural, metabolic, and hemodynamic alterations that could ultimately promote neuronal dysfunction and cognitive decline.


Assuntos
Pressão Sanguínea , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Transtornos Cerebrovasculares/etiologia , Cognição , Envelhecimento Cognitivo/psicologia , Disfunção Cognitiva/etiologia , Doenças Vasculares Periféricas/complicações , Fatores Etários , Animais , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cerebrovasculares/psicologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Humanos , Microcirculação , Estresse Oxidativo , Doenças Vasculares Periféricas/fisiopatologia , Fluxo Pulsátil , Fatores de Risco , Remodelação Vascular , Rigidez Vascular
3.
J Cell Physiol ; 233(4): 3218-3229, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28834610

RESUMO

The transcriptional factors implicated in the expression of the intermediate filament protein nestin in cardiomyocytes during embryogenesis remain undefined. In the heart of 9,5-10,5 day embryonic mice, nestin staining was detected in atrial and ventricular cardiomyocytes and a subpopulation co-expressed Tbx5. At later stages of development, nestin immunoreactivity in cardiomyocytes gradually diminished and was absent in the heart of 17,5 day embryonic mice. In the heart of wild type 11,5 day embryonic mice, 54 ± 7% of the trabeculae expressed nestin and the percentage was significantly increased in the hearts of Tbx5+/- and Gata4+/- embryos. The cell cycle protein Ki67 and transcriptional coactivator Yap-1 were still prevalent in the nucleus of nestin(+) -cardiomyocytes identified in the heart of Tbx5+/- and Gata4+/- embryonic mice. Phorbol 12,13-dibutyrate treatment of neonatal rat ventricular cardiomyocytes increased Yap-1 phosphorylation and co-administration of the p38 MAPK inhibitor SB203580 led to significant dephosphorylation. Antagonism of dephosphorylated Yap-1 signalling with verteporfin inhibited phorbol 12,13-dibutyrate/SB203580-mediated nestin expression and BrdU incorporation of neonatal cardiomyocytes. Nestin depletion with an AAV9 containing a shRNA directed against the intermediate filament protein significantly reduced the number of neonatal cardiomyocytes that re-entered the cell cycle. These findings demonstrate that Tbx5- and Gata4-dependent events negatively regulate nestin expression in cardiomyocytes during embryogenesis. By contrast, dephosphorylated Yap-1 acting via upregulation of the intermediate filament protein nestin plays a seminal role in the cell cycle re-entry of cardiomyocytes. Based on these data, an analogous role of Yap-1 may be prevalent in the heart of Tbx5+/- and Gata4+/- mice.


Assuntos
Desenvolvimento Embrionário , Miócitos Cardíacos/metabolismo , Nestina/metabolismo , Animais , Animais Recém-Nascidos , Ciclo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Fator de Transcrição GATA4/metabolismo , Heterozigoto , Imidazóis/farmacologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Piridinas/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...