Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37643610

RESUMO

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA , Histonas , Nucleossomos , Montagem e Desmontagem da Cromatina , DNA , Metilases de Modificação do DNA , Epigênese Genética , Histonas/genética , Nucleossomos/genética , Sêmen , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37503143

RESUMO

Epigenetic inheritance refers to the faithful replication of DNA methylation and histone modification independent of DNA sequence. Nucleosomes block access to DNA methyltransferases, unless they are remodeled by DECREASE IN DNA METHYLATION1 (DDM1 Lsh/HELLS ), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 activity results in replacement of the transcriptional histone variant H3.3 for the replicative variant H3.1 during the cell cycle. In ddm1 mutants, DNA methylation can be restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals direct engagement at SHL2 with histone H3.3 at or near variant residues required for assembly, as well as with the deacetylated H4 tail. An N-terminal autoinhibitory domain binds H2A variants to allow remodeling, while a disulfide bond in the helicase domain is essential for activity in vivo and in vitro . We show that differential remodeling of H3 and H2A variants in vitro reflects preferential deposition in vivo . DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1 Dnmt1 . DDM1 localization to the chromosome is blocked by H4K16 acetylation, which accumulates at DDM1 targets in ddm1 mutants, as does the sperm cell specific H3.3 variant MGH3 in pollen, which acts as a placeholder nucleosome in the germline and contributes to epigenetic inheritance.

3.
Mol Cell ; 73(1): 61-72.e3, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472189

RESUMO

Recent studies have indicated that nucleosome turnover is rapid, occurring several times per cell cycle. To access the effect of nucleosome turnover on the epigenetic landscape, we investigated H3K79 methylation, which is produced by a single methyltransferase (Dot1l) with no known demethylase. Using chemical-induced proximity (CIP), we find that the valency of H3K79 methylation (mono-, di-, and tri-) is determined by nucleosome turnover rates. Furthermore, propagation of this mark is predicted by nucleosome turnover simulations over the genome and accounts for the asymmetric distribution of H3K79me toward the transcriptional unit. More broadly, a meta-analysis of other conserved histone modifications demonstrates that nucleosome turnover models predict both valency and chromosomal propagation of methylation marks. Based on data from worms, flies, and mice, we propose that the turnover of modified nucleosomes is a general means of propagation of epigenetic marks and a determinant of methylation valence.


Assuntos
Metilação de DNA , Epigênese Genética , Genoma , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Montagem e Desmontagem da Cromatina , Simulação por Computador , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase , Histonas/genética , Humanos , Células Jurkat , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Modelos Genéticos , Método de Monte Carlo , Nucleossomos/genética
4.
Nat Commun ; 8(1): 560, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916764

RESUMO

Understanding the causal link between epigenetic marks and gene regulation remains a central question in chromatin biology. To edit the epigenome we developed the FIRE-Cas9 system for rapid and reversible recruitment of endogenous chromatin regulators to specific genomic loci. We enhanced the dCas9-MS2 anchor for genome targeting with Fkbp/Frb dimerizing fusion proteins to allow chemical-induced proximity of a desired chromatin regulator. We find that mSWI/SNF (BAF) complex recruitment is sufficient to oppose Polycomb within minutes, leading to activation of bivalent gene transcription in mouse embryonic stem cells. Furthermore, Hp1/Suv39h1 heterochromatin complex recruitment to active promoters deposits H3K9me3 domains, resulting in gene silencing that can be reversed upon washout of the chemical dimerizer. This inducible recruitment strategy provides precise kinetic information to model epigenetic memory and plasticity. It is broadly applicable to mechanistic studies of chromatin in mammalian cells and is particularly suited to the analysis of endogenous multi-subunit chromatin regulator complexes.Understanding the link between epigenetic marks and gene regulation requires the development of new tools to directly manipulate chromatin. Here the authors demonstrate a Cas9-based system to recruit chromatin remodelers to loci of interest, allowing rapid, reversible manipulation of epigenetic states.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Epigênese Genética , Edição de Genes , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Inativação Gênica , Células HEK293 , Heterocromatina/metabolismo , Humanos , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas
5.
Nat Struct Mol Biol ; 24(4): 344-352, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28250416

RESUMO

The resolution and formation of facultative heterochromatin are essential for development, reprogramming, and oncogenesis. The mechanisms underlying these changes are poorly understood owing to the difficulty of studying heterochromatin dynamics and structure in vivo. We devised an in vivo approach to investigate these mechanisms and found that topoisomerase II (TOP2), but not TOP1, synergizes with BAF (mSWI/SNF) ATP-dependent chromatin remodeling complexes genome-wide to resolve facultative heterochromatin to accessible chromatin independent of transcription. This indicates that changes in DNA topology that take place through (de-)catenation rather than the release of torsional stress through swiveling are necessary for heterochromatin resolution. TOP2 and BAF cooperate to recruit pluripotency factors, which explains some of the instructive roles of BAF complexes. Unexpectedly, we found that TOP2 also plays a role in the re-formation of facultative heterochromatin; this finding suggests that facultative heterochromatin and accessible chromatin exist at different states of catenation or other topologies, which might be critical to their structures.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Topoisomerases Tipo II/metabolismo , Heterocromatina/metabolismo , Animais , Imunoprecipitação da Cromatina , DNA/metabolismo , Eletroforese em Gel de Ágar , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Loci Gênicos , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Sirolimo/farmacologia , Fatores de Tempo , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos
6.
Nat Genet ; 49(2): 282-288, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27941795

RESUMO

Trithorax-group proteins and their mammalian homologs, including those in BAF (mSWI/SNF) complexes, are known to oppose the activity of Polycomb repressive complexes (PRCs). This opposition underlies the tumor-suppressive role of BAF subunits and is expected to contribute to neurodevelopmental disorders. However, the mechanisms underlying opposition to Polycomb silencing are poorly understood. Here we report that recurrent disease-associated mutations in BAF subunits induce genome-wide increases in PRC deposition and activity. We show that point mutations in SMARCA4 (also known as BRG1) mapping to the ATPase domain cause loss of direct binding between BAF and PRC1 that occurs independently of chromatin. Release of this direct interaction is ATP dependent, consistent with a transient eviction mechanism. Using a new chemical-induced proximity assay, we find that BAF directly evicts Polycomb factors within minutes of its occupancy, thereby establishing a new mechanism for the widespread BAF-PRC opposition underlying development and disease.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Mutação Puntual/genética , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição/genética , Trifosfato de Adenosina/genética , Animais , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética
7.
Nat Genet ; 49(2): 213-222, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27941796

RESUMO

The opposition between Polycomb repressive complexes (PRCs) and BAF (mSWI/SNF) complexes has a critical role in both development and disease. Mutations in the genes encoding BAF subunits contribute to more than 20% of human malignancies, yet the underlying mechanisms remain unclear, owing largely to a lack of assays to assess BAF function in living cells. To address this, we have developed a widely applicable recruitment assay system through which we find that BAF opposes PRC by rapid, ATP-dependent eviction, leading to the formation of accessible chromatin. The reversal of this process results in reassembly of facultative heterochromatin. Surprisingly, BAF-mediated PRC eviction occurs in the absence of RNA polymerase II (Pol II) occupancy, transcription, and replication. Further, we find that tumor-suppressor and oncogenic mutant BAF complexes have different effects on PRC eviction. The results of these studies define a mechanistic sequence underlying the resolution and formation of facultative heterochromatin, and they demonstrate that BAF opposes PRC on a minute-by-minute basis to provide epigenetic plasticity.


Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Heterocromatina/genética , Proteínas Nucleares/genética , Proteínas do Grupo Polycomb/genética , Cromatina/genética , Replicação do DNA/genética , Epigênese Genética/genética , Humanos , Mutação/genética , RNA Polimerase II/genética , Transcrição Gênica/genética
8.
Development ; 140(14): 2953-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23760956

RESUMO

In mammals and plants, parental genomic imprinting restricts the expression of specific loci to one parental allele. Imprinting in mammals relies on sex-dependent de novo deposition of DNA methylation during gametogenesis but a comparable mechanism was not shown in plants. Rather, paternal silencing by the maintenance DNA methyltransferase 1 (MET1) and maternal activation by the DNA demethylase DEMETER (DME) cause maternal expression. However, genome-wide studies suggested other DNA methylation-dependent imprinting mechanisms. Here, we show that de novo RNA-directed DNA methylation (RdDM) regulates imprinting at specific loci expressed in endosperm. RdDM in somatic tissues is required to silence expression of the paternal allele. By contrast, the repression of RdDM in female gametes participates with or without DME requirement in the activation of the maternal allele. The contrasted activity of DNA methylation between male and female gametes appears sufficient to prime imprinted maternal expression. After fertilization, MET1 maintains differential expression between the parental alleles. RdDM depends on small interfering RNAs (siRNAs). The involvement of RdDM in imprinting supports the idea that sources of siRNAs such as transposons and de novo DNA methylation were recruited in a convergent manner in plants and mammals in the evolutionary process leading to selection of imprinted loci.


Assuntos
Arabidopsis/genética , Metilação de DNA , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Impressão Genômica , Arabidopsis/metabolismo , Endosperma , RNA de Plantas , RNA Interferente Pequeno/metabolismo
9.
Curr Biol ; 22(21): R929-31, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23137693

RESUMO

Progress in studying epigenetic reprogramming in plants has been impeded by the difficulty in obtaining tissue for analysis. Now, using a combination of fluorescent reporters and translational fusions, a new study sheds some light on this process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Metilação de DNA , Metiltransferases/metabolismo
10.
Plant Methods ; 8(1): 44, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23075219

RESUMO

BACKGROUND: The male germline in flowering plants differentiates by asymmetric division of haploid uninucleated microspores, giving rise to a vegetative cell enclosing a smaller generative cell, which eventually undergoes a second mitosis to originate two sperm cells. The vegetative cell and the sperm cells activate distinct genetic and epigenetic mechanisms to control pollen tube growth and germ cell specification, respectively. Therefore, a comprehensive characterization of these processes relies on efficient methods to isolate each of the different cell types throughout male gametogenesis. RESULTS: We developed stable transgenic Arabidopsis lines and reliable purification tools based on Fluorescence-Activated Cell Sorting (FACS) in order to isolate highly pure and viable fractions of each cell/nuclei type before and after pollen mitosis. In the case of mature pollen, this was accomplished by expressing GFP and RFP in the sperm and vegetative nuclei, respectively, resulting in 99% pure sorted populations. Microspores were also purified by FACS taking advantage of their characteristic small size and autofluorescent properties, and were confirmed to be 98% pure. CONCLUSIONS: We provide simple and efficient FACS-based purification protocols for Arabidopsis microspores, vegetative nuclei and sperm cells. This paves the way for subsequent molecular analysis such as transcriptomics, DNA methylation analysis and chromatin immunoprecipitation, in the developmental context of microgametogenesis in Arabidopsis.

11.
Cell ; 151(1): 194-205, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23000270

RESUMO

Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.


Assuntos
Arabidopsis/genética , Metilação de DNA , Epigênese Genética , Pólen/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Animais , Arabidopsis/crescimento & desenvolvimento , Elementos de DNA Transponíveis , Mamíferos/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Sementes/genética , Sementes/metabolismo
12.
Curr Opin Genet Dev ; 21(2): 134-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21330131

RESUMO

The movement of mobile small RNA signals between cells has garnered much interest over the last few years, and has recently been extended to germ cells during gamete development. Focusing on plants, we review mobile RNA signals that arise following reprogramming in the germline, and their effect on transposable element silencing on the one hand and on meiotic and apomictic germ cell fate on the other. A potential role for reprogramming and small RNA in hybrid formation and speciation is proposed.


Assuntos
Arabidopsis/genética , Genoma de Planta , Células Germinativas Vegetais/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Animais , Humanos , RNA Interferente Pequeno/biossíntese
13.
Genes Dev ; 21(22): 2963-75, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17978102

RESUMO

Alternative splicing is a powerful mechanism affording extensive proteomic and regulatory diversity from a limited repertoire of genes. However, the extent to which alternative splicing has contributed to the evolution of primate species-specific characteristics has not been assessed previously. Using comparative genomics and quantitative microarray profiling, we performed the first global analysis of alternative splicing differences between humans and chimpanzees. Surprisingly, 6%-8% of profiled orthologous exons display pronounced splicing level differences in the corresponding tissues from the two species. Little overlap is observed between the genes associated with alternative splicing differences and the genes that display steady-state transcript level differences, indicating that these layers of regulation have evolved rapidly to affect distinct subsets of genes in humans and chimpanzees. The alternative splicing differences we detected are predicted to affect diverse functions including gene expression, signal transduction, cell death, immune defense, and susceptibility to diseases. Differences in expression at the protein level of the major splice variant of Glutathione S-transferase omega-2 (GSTO2), which functions in the protection against oxidative stress and is associated with human aging-related diseases, suggests that this enzyme is less active in human cells compared with chimpanzee cells. The results of this study thus support an important role for alternative splicing in establishing differences between humans and chimpanzees.


Assuntos
Processamento Alternativo/genética , Genoma Humano , Pan troglodytes/genética , Animais , Evolução Molecular , Éxons , Etiquetas de Sequências Expressas/química , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/genética , Variação Genética , Genômica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Íntrons , Isoenzimas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos , RNA Mensageiro/genética , Especificidade da Espécie , Transfecção
14.
Nat Cell Biol ; 8(11): 1235-45, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17060907

RESUMO

The polarized glandular organization of epithelial cells is frequently lost during development of carcinoma. However, the specific oncogene targets responsible for polarity disruption have not been identified. Here, we demonstrate that activation of ErbB2 disrupts apical-basal polarity by associating with Par6-aPKC, components of the Par polarity complex. Inhibition of interaction between Par6 and aPKC blocked the ability of ErbB2 to disrupt the acinar organization of breast epithelia and to protect cells from apoptosis but was not required for cell proliferation. Therefore, oncogenes target polarity proteins to disrupt glandular organization and protect cells from apoptotic death during development of carcinoma.


Assuntos
Proteínas de Transporte/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Proteína Quinase C/metabolismo , Receptor ErbB-2/metabolismo , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular , Polaridade Celular/fisiologia , Células Epiteliais/citologia , Expressão Gênica , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Ligação Proteica , Receptor ErbB-2/genética , Transdução de Sinais/fisiologia
15.
Biochemistry ; 45(19): 6075-84, 2006 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-16681380

RESUMO

Synthetic photocontrolled proteins could be powerful tools for probing cellular chemistry. Several previous attempts to produce such systems by incorporating photoisomerizable chromophores into biomolecules have led to photocontrol but with incomplete reversibility, where the chromophore becomes trapped in one photoisomeric state. We report here the design of a modified GCN4-bZIP DNA-binding protein with an azobenzene chromophore introduced between Cys residues at positions 262 and 269 (S262C, N269C) within the zipper domain. As predicted, the trans form of the chromophore destabilizes the helical structure of the coiled-coil region of GCN4-bZIP, leading to diminished DNA binding relative to wild type. Trans-to-cis photoisomerization of the chromophore increases helical content and substantially enhances DNA binding. The system is observed to be readily reversible; thermal relaxation of the chromophore to the trans state and concomitant dissociation of the protein-DNA complex occurs with tau(1/2) approximately 10 min at 37 degrees C. It appears that conformational dynamics in the zipper domain make the transition state for isomerization readily available so that retention of reversible switching is observed.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/química , Dicroísmo Circular , Primers do DNA , Proteínas de Ligação a DNA/química , Eletroforese Capilar , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fotoquímica , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...