Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050170

RESUMO

The increasing resistance to antibiotics is compromising the empirical treatment of infections caused by resistant bacteria. Rapid, efficient, and clinically applicable phenotypic methods are needed for their detection. This study examines the phenotypic behavior of ß-lactam-resistant Gram-negative bacteria grown on ChromID ESBL medium with ertapenem, cefoxitin, and cefepime disks, reports on the coloration of colonies, and establishes a halo diameter breakpoint for the detection of carbapenemase-producing bacteria. We studied 186 ß-lactam-resistant Gram-negative microorganisms (77 with extended spectrum beta lactamase (ESBL), 97 with carbapenemases, and 12 with AmpC ß-lactamases (AmpC)). Susceptibility profiles of Gram-negative bacteria that produced ESBL, AmpC, and carbapenemases were similar to the expected profiles, with some differences in the response to cefepime of ESBL-producing microorganisms. Coloration values did not differ from those described by the manufacturer of ChromID ESBL medium. In the screening of carbapenemase production, inhibition halo diameter breakpoints for antibiotic resistance were 18 mm for Enterobacterales and ertapenem, 18 mm for Pseudomonas and cefepime, and 16 mm for Acinetobacter baumannii and cefepime. This innovative phenotypic approach is highly relevant to clinical laboratories, combining susceptibility profiles with detection by coloration of high-priority resistant microorganisms such as carbapenemase-producing A. baumannii, carbapenemase-producing Pseudomonas spp., and ESBL and/or carbapenemase-producing Enterobacterales.

2.
Ann Transl Med ; 8(9): 604, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32566630

RESUMO

BACKGROUND: Antibiotic resistance is a serious public health challenge exacerbated by the widespread use of ß-lactam and glycopeptide antibiotics. The identification of resistances is crucial, and CHROMID ESBL medium has been developed to detect enterobacteria with extended-spectrum ß-lactamases (ESBL). The objective of this study was to evaluate the potential of this medium to detect other types of resistant bacteria. METHODS: Vancomycin, cefoxitin, imipenem, and cefepime disks were used to measure growth on CHROMID ESBL medium of ß-lactam-resistant Gram-negative (83 with ESBL, 57 with carbapenemases, 35 with AmpC and 3 Stenotrophomonas maltophilia) and Gram-positive [37 vancomycin-susceptible (vancoS) microorganisms and 21 vancomycin-resistant (vancoR) Enterococcus faecium] clinical isolates (retrospective study) and colonization by the aforementioned bacteria (prospective study), using 649 rectal swabs, 314 pharyngeal swabs, and 44 swabs from other localizations. RESULTS: Retrospective study: species grown on the medium exhibited different colors. Growth on the medium was observed for: all ESBL enterobacteria, which were susceptible to imipenem and cefoxitin; 95% of isolates with carbapenemases, mostly resistant to imipenem; 80% of those with AmpC; 86% of vancoR E. faecium isolates; and 42% of vancoS E. faecalis isolates, with large growth inhibition halos around the vancomycin disk. Prospective study: vancoR E. faecium, ESBL Klebsiella, Pseudomonas with carbapenemases, A. baumannii (mostly from rectal swabs), S. maltophilia, Achromobacter xylosoxidans, and Burkholderia cenocepacia (mostly from pharyngeal swabs) were isolated from the 246 positive samples. CONCLUSIONS: CHROMID ESBL medium permitted the differential growth of Gram-negative bacteria, many with ESBL and carbapenemases. ESBL enterobacteria were susceptible to imipenem, carbapenemase-producing microorganisms grew around the imipenem disk, and vancoR E. faecium was isolated on the medium. Results of the prospective study demonstrate the potential clinical relevance of this medium. S. maltophilia was more frequently detected with pharyngeal swabs and ESBL Klebsiella, A. baumannii, and Pseudomonas with rectal swabs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...