Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Genet ; 47(4): 353-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730764

RESUMO

Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect. We also observe two types of parent-of-origin effects, including classical imprinting and a new global allelic imbalance in expression favoring the paternal allele. We conclude that, as with humans, pervasive regulatory variation influences complex genetic traits in mice and provide a new resource toward understanding the genetic control of transcription in mammals.


Assuntos
Alelos , Desequilíbrio Alélico/genética , Cruzamentos Genéticos , Expressão Gênica , Especiação Genética , Camundongos/genética , Animais , Mecanismo Genético de Compensação de Dose , Feminino , Humanos , Masculino , Camundongos Knockout , Filogenia , Polimorfismo de Nucleotídeo Único
3.
PLoS Genet ; 9(10): e1003853, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098153

RESUMO

X chromosome inactivation (XCI) is the mammalian mechanism of dosage compensation that balances X-linked gene expression between the sexes. Early during female development, each cell of the embryo proper independently inactivates one of its two parental X-chromosomes. In mice, the choice of which X chromosome is inactivated is affected by the genotype of a cis-acting locus, the X-chromosome controlling element (Xce). Xce has been localized to a 1.9 Mb interval within the X-inactivation center (Xic), yet its molecular identity and mechanism of action remain unknown. We combined genotype and sequence data for mouse stocks with detailed phenotyping of ten inbred strains and with the development of a statistical model that incorporates phenotyping data from multiple sources to disentangle sources of XCI phenotypic variance in natural female populations on X inactivation. We have reduced the Xce candidate 10-fold to a 176 kb region located approximately 500 kb proximal to Xist. We propose that structural variation in this interval explains the presence of multiple functional Xce alleles in the genus Mus. We have identified a new allele, Xce(e) present in Mus musculus and a possible sixth functional allele in Mus spicilegus. We have also confirmed a parent-of-origin effect on X inactivation choice and provide evidence that maternal inheritance magnifies the skewing associated with strong Xce alleles. Based on the phylogenetic analysis of 155 laboratory strains and wild mice we conclude that Xce(a) is either a derived allele that arose concurrently with the domestication of fancy mice but prior the derivation of most classical inbred strains or a rare allele in the wild. Furthermore, we have found that despite the presence of multiple haplotypes in the wild Mus musculus domesticus has only one functional Xce allele, Xce(b). Lastly, we conclude that each mouse taxa examined has a different functional Xce allele.


Assuntos
Mecanismo Genético de Compensação de Dose , Genes Ligados ao Cromossomo X , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Alelos , Animais , Mapeamento Cromossômico , Feminino , Loci Gênicos , Haplótipos , Camundongos , Filogenia
4.
PLoS One ; 7(11): e48936, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145029

RESUMO

Parent-of-origin differential DNA methylation has been associated with regulation of the preferential expression of paternal or maternal alleles of imprinted genes. Based on this association, recent studies have searched for parent-of-origin dependent differentially methylated regions in order to identify new imprinted genes in their vicinity. In a previous genome-wide analysis of mouse brain DNA methylation, we found a novel differentially methylated region in a CpG island located in the last intron of the alpha 1 Actinin (Actn1) gene. In this region, preferential methylation of the maternal allele was observed; however, there were no reports of imprinted expression of Actn1. Therefore, we have tested if differential methylation of this region is common to other tissues and species and affects the expression of Actn1. We have found that Actn1 differential methylation occurs in diverse mouse tissues. Moreover, it is also present in other murine rodents (rat), but not in the orthologous human region. In contrast, we have found no indication of an imprinted effect on gene expression of Actn1 in mice: expression is always biallelic regardless of sex, tissue type, developmental stage or isoform. Therefore, we have identified a novel parent-of-origin dependent differentially methylated region that has no apparent association with imprinted expression of the closest genes. Our findings sound a cautionary note to genome-wide searches on the use of differentially methylated regions for the identification of imprinted genes and suggest that parent-of-origin dependent differential methylation might be conserved for functions other that the control of imprinted expression.


Assuntos
Actinina/genética , Metilação de DNA , Impressão Genômica/genética , Íntrons , Alelos , Animais , Ilhas de CpG , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...