Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(25): e202402628, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623865

RESUMO

Production of thermoelectric materials from solution-processed particles involves the synthesis of particles, their purification and densification into pelletized material. Chemical changes that occur during each one of these steps render them performance determining. Particularly the purification steps, bypassed in conventional solid-state synthesis, are the cause for large discrepancies among similar solution-processed materials. In present work, the investigation focuses on a water-based surfactant free solution synthesis of SnSe, a highly relevant thermoelectric material. We show and rationalize that the number of leaching steps, purification solvent, annealing, and annealing atmosphere have significant influence on the Sn : Se ratio and impurity content in the powder. Such compositional changes that are undetectable by conventional characterization techniques lead to distinct consolidated materials with different types and concentration of defects. Additionally, the profound effect on their transport properties is demonstrated. We emphasize that understanding the chemistry and identifying key chemical species and their role throughout the process is paramount for optimizing material performance. Furthermore, we aim to demonstrate the necessity of comprehensive reporting of these steps as a standard practice to ensure material reproducibility.

2.
Chem Mater ; 34(19): 8471-8489, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36248227

RESUMO

Thermoelectric technology requires synthesizing complex materials where not only the crystal structure but also other structural features such as defects, grain size and orientation, and interfaces must be controlled. To date, conventional solid-state techniques are unable to provide this level of control. Herein, we present a synthetic approach in which dense inorganic thermoelectric materials are produced by the consolidation of well-defined nanoparticle powders. The idea is that controlling the characteristics of the powder allows the chemical transformations that take place during consolidation to be guided, ultimately yielding inorganic solids with targeted features. Different from conventional methods, syntheses in solution can produce particles with unprecedented control over their size, shape, crystal structure, composition, and surface chemistry. However, to date, most works have focused only on the low-cost benefits of this strategy. In this perspective, we first cover the opportunities that solution processing of the powder offers, emphasizing the potential structural features that can be controlled by precisely engineering the inorganic core of the particle, the surface, and the organization of the particles before consolidation. We then discuss the challenges of this synthetic approach and more practical matters related to solution processing. Finally, we suggest some good practices for adequate knowledge transfer and improving reproducibility among different laboratories.

3.
ACS Nano ; 16(1): 78-88, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34549956

RESUMO

SnSe has emerged as one of the most promising materials for thermoelectric energy conversion due to its extraordinary performance in its single-crystal form and its low-cost constituent elements. However, to achieve an economic impact, the polycrystalline counterpart needs to replicate the performance of the single crystal. Herein, we optimize the thermoelectric performance of polycrystalline SnSe produced by consolidating solution-processed and surface-engineered SnSe particles. In particular, the SnSe particles are coated with CdSe molecular complexes that crystallize during the sintering process, forming CdSe nanoparticles. The presence of CdSe nanoparticles inhibits SnSe grain growth during the consolidation step due to Zener pinning, yielding a material with a high density of grain boundaries. Moreover, the resulting SnSe-CdSe nanocomposites present a large number of defects at different length scales, which significantly reduce the thermal conductivity. The produced SnSe-CdSe nanocomposites exhibit thermoelectric figures of merit up to 2.2 at 786 K, which is among the highest reported for solution-processed SnSe.

4.
Adv Mater ; 33(52): e2106858, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626034

RESUMO

Solution synthesis of particles emerges as an alternative to prepare thermoelectric materials with less demanding processing conditions than conventional solid-state synthetic methods. However, solution synthesis generally involves the presence of additional molecules or ions belonging to the precursors or added to enable solubility and/or regulate nucleation and growth. These molecules or ions can end up in the particles as surface adsorbates and interfere in the material properties. This work demonstrates that ionic adsorbates, in particular Na+ ions, are electrostatically adsorbed in SnSe particles synthesized in water and play a crucial role not only in directing the material nano/microstructure but also in determining the transport properties of the consolidated material. In dense pellets prepared by sintering SnSe particles, Na remains within the crystal lattice as dopant, in dislocations, precipitates, and forming grain boundary complexions. These results highlight the importance of considering all the possible unintentional impurities to establish proper structure-property relationships and control material properties in solution-processed thermoelectric materials.

5.
ACS Energy Lett ; 6(2): 581-587, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33614964

RESUMO

Cesium lead halides have intrinsically unstable crystal lattices and easily transform within perovskite and nonperovskite structures. In this work, we explore the conversion of the perovskite CsPbBr3 into Cs4PbBr6 in the presence of PbS at 450 °C to produce doped nanocrystal-based composites with embedded Cs4PbBr6 nanoprecipitates. We show that PbBr2 is extracted from CsPbBr3 and diffuses into the PbS lattice with a consequent increase in the concentration of free charge carriers. This new doping strategy enables the adjustment of the density of charge carriers between 1019 and 1020 cm-3, and it may serve as a general strategy for doping other nanocrystal-based semiconductors.

6.
JACS Au ; 1(11): 1898-1903, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-35574040

RESUMO

Ligands are a fundamental part of nanocrystals. They control and direct nanocrystal syntheses and provide colloidal stability. Bound ligands also affect the nanocrystals' chemical reactivity and electronic structure. Surface chemistry is thus crucial to understand nanocrystal properties and functionality. Here, we investigate the synthesis of metal oxide nanocrystals (CeO2-x , ZnO, and NiO) from metal nitrate precursors, in the presence of oleylamine ligands. Surprisingly, the nanocrystals are capped exclusively with a fatty acid instead of oleylamine. Analysis of the reaction mixtures with nuclear magnetic resonance spectroscopy revealed several reaction byproducts and intermediates that are common to the decomposition of Ce, Zn, Ni, and Zr nitrate precursors. Our evidence supports the oxidation of alkylamine and formation of a carboxylic acid, thus unraveling this counterintuitive surface chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...