Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Chronobiol Int ; 41(3): 456-472, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38380627

RESUMO

Among the public health recommendations for supporting mental health during the COVID-19 pandemic, many strategies had an impact on biological rhythms, like sleep hygiene, physical exercise and healthy eating habits. Considering the known relationship between circadian organization and mental health, our aim was to test the association between behavioral regularity and mental health, and its interaction with chronotype, in a large sample surveyed in Brazil. We collected longitudinal data using online questionnaires that assessed sociodemographic characteristics, behavioral routines, mental health (PHQ-9, GAD-7, WHO-5 scales), and chronotype estimation based on midpoint of sleep on free days - MSF (µMCTQ), in a sample of 1390 participants (81% females). We computed a Routine Regularity Score (RRS) that reflects regularity across four behaviors: sleep, eating, working, exercising. There was a strong negative association between RRS and the severity of anxiety and depressive symptoms (GAD-7 and PHQ-9 scores), which was weaker among participants with late MSF, and a strong positive association with well-being (WHO-5 scores). RRS was a mediator of the MSF-mental health association and a predictor of mental health states. This study provides empirical evidence that maintaining behavioral routines during times of hardship may serve as tools to alleviate the negative impact on mental health.


Assuntos
Ritmo Circadiano , Pandemias , Feminino , Humanos , Masculino , Cronotipo , Sono , Inquéritos e Questionários , Avaliação de Resultados em Cuidados de Saúde
2.
Biomed Chromatogr ; 38(4): e5820, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154955

RESUMO

Temporal lobe epilepsy (TLE) is a common form of refractory epilepsy in adulthood. The metabolic profile of epileptogenesis is still poorly investigated. Elucidation of such a metabolic profile using animal models of epilepsy could help identify new metabolites and pathways involved in the mechanisms of epileptogenesis process. In this study, we evaluated the metabolic profile during the epileptogenesis periods. Using a pilocarpine model of epilepsy, we analyzed the global metabolic profile of hippocampal extracts by untargeted metabolomics based on ultra-performance liquid chromatography-high-resolution mass spectrometry, at three time points (3 h, 1 week, and 2 weeks) after status epilepticus (SE) induction. We demonstrated that epileptogenesis periods presented different hippocampal metabolic profiles, including alterations of metabolic pathways of amino acids and lipid metabolism. Six putative metabolites (tryptophan, N-acetylornithine, N-acetyl-L-aspartate, glutamine, adenosine, and cholesterol) showed significant different levels during epileptogenesis compared to their respective controls. These putative metabolites could be associated with the imbalance of neurotransmitters, mitochondrial dysfunction, and cell loss observed during both epileptogenesis and epilepsy. With these findings, we provided an overview of hippocampal metabolic profiles during different stages of epileptogenesis that could help investigate pathways and respective metabolites as predictive tools in epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Epilepsia/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Metaboloma , Pilocarpina/metabolismo
3.
Adv Neurobiol ; 34: 103-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962795

RESUMO

For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.


Assuntos
Axônios , Espinhas Dendríticas , Humanos , Cognição , Plasticidade Neuronal , Transmissão Sináptica
4.
Adv Neurobiol ; 34: 1-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962793

RESUMO

Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.


Assuntos
Encéfalo , Espinhas Dendríticas , Animais , Humanos , Córtex Cerebral , Emoções , Aprendizagem
5.
Adv Neurobiol ; 34: 255-310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962798

RESUMO

Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.


Assuntos
Espinhas Dendríticas , Neuroglia , Animais , Humanos , Camundongos , Ratos , Astrócitos , Microglia , Neurônios
6.
Epilepsy Res ; 197: 107236, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801749

RESUMO

The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Reprodutibilidade dos Testes , Anticonvulsivantes/farmacologia , Convulsões/tratamento farmacológico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Pentilenotetrazol/toxicidade
7.
Eur J Neurosci ; 57(3): 527-546, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504470

RESUMO

Autism spectrum disorder (ASD) is characterized by impaired social communication and interaction associated with repetitive or stereotyped behaviour. Prenatal valproic acid (VPA) exposure in rodents is a commonly used model of ASD. Resveratrol (RSV) has been shown to prevent interneuronal and behavioural impairments in the VPA model. We investigated the effects of prenatal VPA exposure and RSV on the GABAergic synaptic transmission, brain oscillations and on the genic expression of interneuron-associated transcription factor LHX6 in the primary somatosensory area (PSSA). Prenatal VPA exposure decreased the sIPSC and mIPSC frequencies and the sIPSC decay kinetics onto layers 4/5 pyramidal cells of PSSA. About 40% of VPA animals exhibited absence-like spike-wave discharge (SWD) events associated with behaviour arrest and increased power spectrum density of delta, beta and gamma cortical oscillations. VPA animals had reduced LHX6 expression in PSSA, but VPA animals treated with RSV had no changes on synaptic inhibition or LHX6 expression in the PSSA. SWD events associated with behaviour arrest and the abnormal increment of cortical oscillations were also absent in VPA animals treated with RSV. These findings provide new venues to investigate the role of both RSV and VPA in the pathophysiology of ASD and highlight the VPA animal model as an interesting tool to investigate pathways related to the aetiology and possible future therapies to this neuropsychiatric disorder.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Ratos , Comportamento Animal , Modelos Animais de Doenças , Resveratrol/farmacologia , Roedores , Comportamento Social , Córtex Somatossensorial , Transmissão Sináptica , Ácido Valproico/farmacologia
8.
J Neurosci Res ; 101(1): 48-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36128957

RESUMO

Memory labilization, the process by which memories become susceptible to update, is essential for memory reconsolidation and has been a target for novel therapies for traumatic memory-associated disorders. Maternal separation (MS) in male rats produced memories resistant to labilization in adulthood. Based on previous results, we hypothesized that temporal desynchronization between the dorsal hippocampus (DHc) and the basolateral amygdala (BLA), during memory retrieval, could be responsible for this impairment. Our goal was to investigate possible differences in oscillatory activity and synchrony between the DHc and BLA during fear memory reactivation, between MS and non-handled (NH) rats. We used male adult Wistar rats, NH or MS, with electrodes for local field potential (LFP) recordings implanted in the DHc and BLA. Animals were submitted to aversive memory reactivation by exposure to the conditioned context (Reat) or to pseudo-reactivation in a neutral context (pReat), and LFP was recorded. Plasticity markers linked to reconsolidation were evaluated one hour after reactivation. The power of delta oscillations and DHc-BLA synchrony in Reat animals was increased, during freezing. Besides, delta modulation of gamma oscillations amplitude in the BLA was associated with the increase in DHc Zif268 levels, an immediate early gene specifically associated with reconsolidation. Concerning early life stress, we found lower power of delta and strength of delta-gamma oscillations coupling in MS rats, compared to NH, which could explain the low Zif268 levels in a subgroup of MS animals. These results suggest a role for delta oscillations in memory reactivation that should be further investigated.


Assuntos
Tonsila do Cerebelo , Privação Materna , Animais , Masculino , Ratos , Ratos Wistar , Tonsila do Cerebelo/fisiologia , Memória/fisiologia , Hipocampo/fisiologia
9.
Neuroscience ; 500: 26-40, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934253

RESUMO

Wistar Audiogenic Rats (WAR) is an inbred rodent strain susceptible to acute auditory stimulation-induced seizures. However, spontaneous epileptic seizures (SES) and their associated electroencephalogram (EEG) abnormalities have not been reported in WAR kindled animals. The same is true for naïve WARs (without sound-induced seizures). An approach to increment epileptogenesis and SES is to use a second insult to be added to the genetic background. Here, we used adult naïve WARs with microgyria induced by neonatal cortical freeze-lesion (FL) to evaluate the occurrence of SES and the modification in cortical oscillation patterns and behavior. The neonatal cortical FL was performed in Wistar and naïve WARs (Wis-FL and WAR-FL). Sham animals were used as controls (Wistar-S and WAR-S). Video-EEG recordings and behavioral tasks were performed during adulthood. Surprisingly, spike-waive discharges (SWD) events associated with behavior arrest were detected in WAR-S rats. Those events increased in duration and number in WAR-FL animals. The EEG quantitative analysis showed decreased power of cortical delta, theta and beta oscillations in WAR-S, decreased power of cortical fast gamma (FG) oscillations in WARs, independent of microgyria, and decreased interhemispheric synchrony for delta and FG with stronger coupling in delta and theta-FG oscillations in FL animals. The WARs, regardless of microgyria, had reduced locomotor activity, but only WAR-FL animals had reduced anxiety-like behavior. Microgyria in naïve WARs intensified SWD events associated with behavior arrest that could reflect absence-like seizures and abnormal cortical oscillations, and reduced anxiety-like behavior indicating that WAR-FL could be a reliable model to study epileptogenesis.


Assuntos
Epilepsia Tipo Ausência , Convulsões , Estimulação Acústica , Animais , Ansiedade , Modelos Animais de Doenças , Eletroencefalografia , Ratos , Ratos Wistar , Convulsões/genética
10.
Neuroscience ; 497: 53-72, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35436517

RESUMO

The endocannabinoid system is involved in the fine-tuning of local synaptic plasticity in the hippocampus during the initial steps of memory formation/transformation. In spite of extensive studies, endocannabinoid modulation of these processes is still poorly understood. Here we studied the effects of intra-CA1 infused AM404, an anandamide (AEA) transport/metabolism inhibitor, upon an aversive memory consolidation with or without prior systemic administration of metyrapone, as well the concomitant intra-CA1 administration of AM404 plus AM251 (CB1 receptor inverse-agonist), capsazepine (TRPV1 receptor antagonist) or tropicamide (M4 receptor antagonist). We also investigated the effect of AM404 on memory retrieval and Long-Term Potentiation induction. Adult male Wistar rats were trained in the Contextual Fear Conditioning task and tested 48 h later. AM404 disrupted both memory consolidation and retrieval, and abolished LTP induction. The post-training effect, however, was reverted by metyrapone - which was amnestic by itself - corroborating the known co-dependency between glucocorticoids and endocannabinoids, and suggesting that some level of aversiveness is necessary for an adequate consolidation. In the coadministration experiments, while AM251 and tropicamide were able to revert the AM404 amnestic effect, capsazepine had no effect. This confirms that CB1 actually mediate the amnestic effect caused by the augmented AEA pool, but TRPV1 does not. The tropicamide result suggests an interesting comodulatory interaction between the endocannabinoid and the cholinergic systems. We propose a steady-state model centered in the idea of an optimal, stable extracellular concentration of anandamide as a necessary condition to ensure the consolidation of a stable memory trace in the CA1 area.


Assuntos
Endocanabinoides , Consolidação da Memória , Animais , Ácidos Araquidônicos , Endocanabinoides/farmacologia , Hipocampo , Masculino , Metirapona/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide , Tropicamida/farmacologia
11.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 44(2): 136-146, Apr. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1374581

RESUMO

Objective: To assess the adherence to a set of evidence-based recommendations to support mental health during the coronavirus disease 2019 (COVID-19) pandemic and its association with depressive and anxiety symptoms. Methods: A team of health workers and researchers prepared the recommendations, formatted into three volumes (1: COVID-19 prevention; 2: Healthy habits; 3: Biological clock and sleep). Participants were randomized to receive only Volume 1 (control), Volumes 1 and 2, Volumes 1 and 3, or all volumes. We used a convenience sample of Portuguese-speaking participants over age 18 years. An online survey consisting of sociodemographic and behavioral questionnaires and mental health instruments (Patient Health Questionnaire-9 [PHQ-9] and Generalized Anxiety Disorder-7 [GAD-7]) was administered. At 14 and 28 days later, participants were invited to complete follow-up surveys, which also included questions regarding adherence to the recommendations. A total of 409 participants completed the study - mostly young adult women holding university degrees. Results: The set of recommendations contained in Volumes 2 and 3 was effective in protecting mental health, as suggested by significant associations of adherence with PHQ-9 and GAD-7 scores (reflecting anxiety and depression symptoms, respectively). Conclusion: The recommendations developed in this study could be useful to prevent negative mental health effects in the context of the pandemic and beyond.

12.
Braz J Psychiatry ; 44(2): 136-146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35262615

RESUMO

OBJECTIVE: To assess the adherence to a set of evidence-based recommendations to support mental health during the coronavirus disease 2019 (COVID-19) pandemic and its association with depressive and anxiety symptoms. METHODS: A team of health workers and researchers prepared the recommendations, formatted into three volumes (1: COVID-19 prevention; 2: Healthy habits; 3: Biological clock and sleep). Participants were randomized to receive only Volume 1 (control), Volumes 1 and 2, Volumes 1 and 3, or all volumes. We used a convenience sample of Portuguese-speaking participants over age 18 years. An online survey consisting of sociodemographic and behavioral questionnaires and mental health instruments (Patient Health Questionnaire-9 [PHQ-9] and Generalized Anxiety Disorder-7 [GAD-7]) was administered. At 14 and 28 days later, participants were invited to complete follow-up surveys, which also included questions regarding adherence to the recommendations. A total of 409 participants completed the study - mostly young adult women holding university degrees. RESULTS: The set of recommendations contained in Volumes 2 and 3 was effective in protecting mental health, as suggested by significant associations of adherence with PHQ-9 and GAD-7 scores (reflecting anxiety and depression symptoms, respectively). CONCLUSION: The recommendations developed in this study could be useful to prevent negative mental health effects in the context of the pandemic and beyond.


Assuntos
COVID-19 , Pandemias , Adolescente , Ansiedade/prevenção & controle , Ansiedade/psicologia , COVID-19/prevenção & controle , Estudos Transversais , Depressão/epidemiologia , Depressão/prevenção & controle , Depressão/psicologia , Feminino , Humanos , Saúde Mental , Pandemias/prevenção & controle , SARS-CoV-2 , Adulto Jovem
13.
J Neurosci Res ; 100(4): 992-1007, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34713466

RESUMO

Glutaric acidemia type I (GA-I) is an inborn error of metabolism of lysine, hydroxylysine, and tryptophan, caused by glutaryl-CoA-dehydrogenase (GCDH) deficiency, characterized by the buildup of toxic organic acids predominantly in the brain. After acute catabolic states, patients usually develop striatal degeneration, but the mechanisms behind this damage are still unknown. Quinolinic acid (QA), a metabolite of the kynurenine pathway, increases especially during infections/inflammatory processes, and could act synergically with organic acids, contributing to the neurological features of GA-I. The aim of this study was to investigate whether QA increases seizure susceptibility and modifies brain oscillation patterns in an animal model of GA-I, the Gcdh-/- mice taking high-lysine diet (Gcdh-/- -Lys). Therefore, the characteristics of QA-induced seizures and changes in brain oscillatory patterns were evaluated by video-electroencephalography (EEG) analysis recorded in Gcdh-/- -Lys, Gcdh+/+ -Lys, and Gcdh-/- -N (normal diet) animals. We found that the number of seizures per animal was similar for all groups receiving QA, Gcdh-/- -Lys-QA, Gcdh+/+ -Lys-QA, and Gcdh-/- -N-QA. However, severe seizures were observed in the majority of Gcdh-/- -Lys-QA mice (82%), and only in 25% of Gcdh+/+ -Lys-QA and 44% of Gcdh-/- -N-QA mice. All Gcdh-/- -Lys animals developed spontaneous recurrent seizures (SRS), but Gcdh-/- -Lys-QA animals had increased number of SRS, higher mortality rate, and significant predominance of lower frequency oscillations on EEG. Our results suggest that QA plays an important role in the neurological features of GA-I, as Gcdh-/- -Lys mice exhibit increased susceptibility to intrastriatal QA-induced seizures and long-term changes in brain oscillations.


Assuntos
Lisina , Ácido Quinolínico , Erros Inatos do Metabolismo dos Aminoácidos , Animais , Encéfalo/metabolismo , Encefalopatias Metabólicas , Modelos Animais de Doenças , Glutaril-CoA Desidrogenase/deficiência , Humanos , Lisina/metabolismo , Lisina/farmacologia , Camundongos , Camundongos Knockout , Ácido Quinolínico/toxicidade , Convulsões/induzido quimicamente , Convulsões/metabolismo
14.
Neuroscience ; 479: 1-21, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34710537

RESUMO

Specific oscillatory patterns are considered biomarkers of pathological neuronal network in brain diseases, such as epilepsy. However, the dynamics of underlying oscillations during the epileptogenesis throughout the hippocampal formation in the temporal lobe epilepsy is not clear. Here, we characterized in vitro oscillatory patterns within the hippocampal formation of epileptic rats, under 4-aminopyridine (4-AP)-induced hyperexcitability and during the spontaneous network activity, at two periods of epileptogenesis. First, at the beginning of epileptic chronic phase, 30 days post-pilocarpine-induced Status Epilepticus (SE). Second, at the established epilepsy, 60 days post-SE. The 4-AP-bathed slices from epileptic rats had increased susceptibility to ictogenesis in CA1 at 30 days post-SE, and in entorhinal cortex and dentate gyrus at 60 days post-SE. Higher power and phase coherence were detected mainly for gamma and/or high frequency oscillations (HFOs), in a region- and stage-specific manner. Interestingly, under spontaneous network activity, even without 4-AP-induced hyperexcitability, slices from epileptic animals already exhibited higher power of gamma and HFOs in different areas of hippocampal formation at both periods of epileptogenesis, and higher phase coherence in fast ripples at 60 days post-SE. These findings reinforce the critical role of gamma and HFOs in each one of the hippocampal formation areas during ongoing neuropathological processes, tuning the neuronal network to epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Estado Epiléptico , Animais , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Hipocampo , Pilocarpina/toxicidade , Ratos , Roedores , Estado Epiléptico/induzido quimicamente
15.
Purinergic Signal ; 17(2): 255-271, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33834349

RESUMO

Ischemic stroke is a major cause of morbidity and mortality worldwide and only few affected patients are able to receive treatment, especially in developing countries. Detailed pathophysiology of brain ischemia has been extensively studied in order to discover new treatments with a broad therapeutic window and that are accessible to patients worldwide. The nucleoside guanosine (Guo) has been shown to have neuroprotective effects in animal models of brain diseases, including ischemic stroke. In a rat model of focal permanent ischemia, systemic administration of Guo was effective only when administered immediately after stroke induction. In contrast, intranasal administration of Guo (In-Guo) was effective even when the first administration was 3 h after stroke induction. In order to validate the neuroprotective effect in this larger time window and to investigate In-Guo neuroprotection under global brain dysfunction induced by ischemia, we used the model of thermocoagulation of pial vessels in Wistar rats. In our study, we have found that In-Guo administered 3 h after stroke was capable of preventing ischemia-induced dysfunction, such as bilateral suppression and synchronicity of brain oscillations and ipsilateral cell death signaling, and increased permeability of the blood-brain barrier. In addition, In-Guo had a long-lasting effect on preventing ischemia-induced motor impairment. Our data reinforce In-Guo administration as a potential new treatment for brain ischemia with a more suitable therapeutic window.


Assuntos
Encéfalo/fisiopatologia , Guanosina/administração & dosagem , Guanosina/uso terapêutico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/fisiopatologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Administração Intranasal , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Veias Cerebrais/efeitos dos fármacos , Eletrocoagulação , Eletroencefalografia/efeitos dos fármacos , Lateralidade Funcional/efeitos dos fármacos , AVC Isquêmico/complicações , Masculino , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/prevenção & controle , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
16.
Front Synaptic Neurosci ; 13: 616607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776739

RESUMO

Human cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70-85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as "pyramidal-like" neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. "Pyramidal-like" to "classic" pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, "atypical" or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer's disease and in temporal lobe epilepsy.

17.
Brain Res ; 1756: 147334, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539794

RESUMO

Acute seizures may cause permanent brain damage depending on the severity. The pilocarpine animal model has been broadly used to study the acute effects of seizures on neurogenesis and plasticity processes and the resulting epileptogenesis. Likewise, zebrafish is a good model to study neurogenesis and plasticity processes even in adulthood. Thus, the aim of this study is to evaluate the effects of pilocarpine-induced acute seizures-like behavior on neuroplasticity and long-term behavior in adult zebrafish. To address this issue, adult zebrafish were injected with Pilocarpine (350 mg/Kg, i.p; PILO group) or Saline (control group). Experiments were performed at 1, 2, 3, 10 or 30 days after injection. We evaluated behavior using the Light/Dark preference, Open Tank and aggressiveness tests. Flow cytometry and BrdU were carried out to detect changes in cell death and proliferation, while Western blotting was used to verify different proliferative, synaptic and neural markers in the adult zebrafish telencephalon. We identified an increased aggressive behavior and increase in cell death in the PILO group, with increased levels of cleaved caspase 3 and PARP1 1 day after seizure-like behavior induction. In addition, there were decreased levels of PSD95 and SNAP25 and increased BrdU positive cells 3 days after seizure-like behavior induction. Although most synaptic and cell death markers levels seemed normal by 30 days after seizures-like behavior, persistent aggressive and anxiolytic-like behaviors were still detected as long-term effects. These findings might indicate that acute severe seizures induce short-term biochemical alterations that ultimately reflects in a long-term altered phenotype.


Assuntos
Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Pilocarpina/farmacologia , Convulsões/tratamento farmacológico , Animais , Proliferação de Células/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurogênese/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Convulsões/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Tempo , Peixe-Zebra
18.
Neuroscience ; 457: 114-124, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465407

RESUMO

Developmental cortical malformations (DCM) are one of the main causes of refractory epilepsy. Many are the mechanisms underlying the hyperexcitability in DCM, including the important contribution of N-methyl-D-aspartate receptors (NMDAR). NMDAR blockers are shown to abolish seizures and epileptiform activity. Memantine, a NMDAR antagonist used to treat Alzheimers disease, has been recently investigated as a possible treatment for other neurological disorders. However, the effects on preventing or diminishing seizures are controversial. Here we aimed to evaluate the effects of memantine on pentylenetetrazole (PTZ)-induced seizures in the freeze-lesion (FL) model. Bilateral cortical microgyria were induced (FL) or not (Sham) in male Wistar neonate rats. At P30, subdural electrodes were implanted and 7 days later, video-EEG was recorded in animals receiving either memantine (FL-M or Sham-M) or saline (FL-S or Sham-S), followed by PTZ. Seizures were evaluated by video-EEG during one hour and scored according to Racine scale. The video-EEG analyses revealed that the number of seizures and the total duration of stage IV-V seizures developed during the 1 h-period increased after memantine application in all groups. The EEG power spectral density (PSD) analysis showed an increased PSD of pre-ictal delta in Sham-M animals and increased PSD of slow, middle and fast gamma oscillations after memantine injection that persists during the pre-ictal period in all groups. Our findings suggested that memantine was unable to control the PTZ-induced seizures and that the associated enhancement of PSD of gamma oscillations may contribute to the increased probability of seizure development in these animals.


Assuntos
Memantina , Pentilenotetrazol , Animais , Modelos Animais de Doenças , Eletroencefalografia , Masculino , Memantina/farmacologia , Pentilenotetrazol/toxicidade , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
19.
Epilepsy Behav ; 121(Pt B): 106935, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32035792

RESUMO

The pathophysiology of epilepsy has been historically grounded on hyperexcitability attributed to the oversimplified imbalance between excitation (E) and inhibition (I) in the brain. The decreased inhibition is mostly attributed to deficits in gamma-aminobutyric acid-containing (GABAergic) interneurons, the main source of inhibition in the central nervous system. However, the cell diversity, the wide range of spatiotemporal connectivity, and the distinct effects of the neurotransmitter GABA especially during development, must be considered to critically revisit the concept of hyperexcitability caused by decreased inhibition as a key characteristic in the development of epilepsy. Here, we will discuss that behind this known mechanism, there is a heterogeneity of GABAergic interneurons with distinct functions and sources, which have specific roles in controlling the neural network activity within the recruited microcircuit and altered network during the epileptogenic process. This article is part of the Special Issue "NEWroscience 2018.


Assuntos
Epilepsia , Ácido gama-Aminobutírico , Neurônios GABAérgicos , Humanos , Interneurônios , Inibição Neural
20.
Learn Mem ; 27(12): 493-502, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199474

RESUMO

During the first ten postnatal days (P), infant rodents can learn olfactory preferences for novel odors if they are paired with thermo-tactile stimuli that mimic components of maternal care. After P10, the thermo-tactile pairing becomes ineffective for conditioning. The current explanation for this change in associative learning is the alteration in the norepinephrine (NE) inputs from the locus coeruleus (LC) to the olfactory bulb (OB) and the anterior piriform cortex (aPC). By combining patch-clamp electrophysiology and computational simulations, we showed in a recent work that a transitory high responsiveness of the OB-aPC circuit to the maternal odor is an alternative mechanism that could also explain early olfactory preference learning and its cessation after P10. That result relied solely on the maturational properties of the aPC pyramidal cells. However, the GABAergic system undergoes important changes during the same period. To address the importance of the maturation of the GABAergic system for early olfactory learning, we incorporated data from the GABA inputs, obtained from in vitro patch-clamp experiment in the aPC of rat pups aged P5-P7 reported here, to the model proposed in our previous publication. In the younger than P10 OB-aPC circuit with GABA synaptic input, the number of responsive aPC pyramidal cells to the conditioned maternal odor was amplified in 30% compared to the circuit without GABAergic input. When compared with the circuit with other younger than P10 OB-aPC circuit with adult GABAergic input profile, this amplification was 88%. Together, our results suggest that during the olfactory preference learning in younger than P10, the GABAergic synaptic input presumably acts by depolarizing the aPC pyramidal neurons in such a way that it leads to the amplification of the pyramidal neurons response to the conditioned maternal odor. Furthermore, our results suggest that during this developmental period, the aPC pyramidal cells themselves seem to resolve the apparent lack of GABAergic synaptic inhibition by a strong firing adaptation in response to increased depolarizing inputs.


Assuntos
Aprendizagem/fisiologia , Odorantes , Condutos Olfatórios/crescimento & desenvolvimento , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Córtex Piriforme/crescimento & desenvolvimento , Córtex Piriforme/fisiologia , Ácido gama-Aminobutírico/fisiologia , Envelhecimento/psicologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Modelos Neurológicos , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia , Córtex Olfatório , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Ratos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...