Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Photochem Photobiol B ; 211: 112000, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32919174

RESUMO

Circadian rhythms are driven by an endogenous clock which is synchronized by daily environmental cycles (known as zeitgebers). Although the circadian responses of C. elegans to light have been recently reported, the mechanisms and pathways involved in their synchronization are still unknown. Here we present, by means of a novel behavioral approach, a complete characterization of C. elegans circadian synchronization to light and temperature cycles. Moreover, we screened mutant strains in search of defects of photic and thermal responses in order to study their putative pathways. We show that the wild-type strain is able to synchronize to combined cycles of light and temperature, with the best performance achieved under an optimal combination and phase-relationship of zeitgebers (high temperature in the dark phase and low temperature in the light phase). A lower responsiveness for the mutant strains MT21793 (lite-1/gur3 ko) and IK597 (gcy 8, 18 and 23 ko) was found in response to light and temperature, respectively. However, both mutants were still able to synchronize to a combined cycle of both stimuli. Our results shed light on the response of C. elegans to different zeitgebers as well as their possible synchronization pathways, the molecular components involved in these pathways, and their relative strength.


Assuntos
Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Animais , Comportamento Animal , Relógios Biológicos , Caenorhabditis elegans , Luz , Modelos Biológicos , Atividade Motora , Mutação , Fotoperíodo , Transdução de Sinais , Temperatura
3.
Sleep ; 42(12)2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31346614

RESUMO

STUDY OBJECTIVES: Sleep disturbances are common co-morbidities of epileptic disorders. Dravet syndrome (DS) is an intractable epilepsy accompanied by disturbed sleep. While there is evidence that daily sleep timing is disrupted in DS, the difficulty of chronically recording polysomnographic sleep from patients has left our understanding of the effect of DS on circadian sleep regulation incomplete. We aim to characterize circadian sleep regulation in a mouse model of DS. METHODS: Here we exploit long-term electrocorticographic recordings of sleep in a mouse model of DS in which one copy of the Scn1a gene is deleted. This model both genocopies and phenocopies the disease in humans. We test the hypothesis that the deletion of Scn1a in DS mice is associated with impaired circadian regulation of sleep. RESULTS: We find that DS mice show impairments in circadian sleep regulation, including a fragmented rhythm of non-rapid eye movement (NREM) sleep and an elongated circadian period of sleep. Next, we characterize re-entrainment of sleep stages and siesta following jet lag in the mouse. Strikingly, we find that re-entrainment of sleep following jet lag is normal in DS mice, in contrast to previous demonstrations of slowed re-entrainment of wheel-running activity. Finally, we report that DS mice are more likely to have an absent or altered daily "siesta". CONCLUSIONS: Our findings support the hypothesis that the circadian regulation of sleep is altered in DS and highlight the value of long-term chronic polysomnographic recording in studying the role of the circadian clock on sleep/wake cycles in pre-clinical models of disease.


Assuntos
Ritmo Circadiano/fisiologia , Epilepsias Mioclônicas/fisiopatologia , Síndrome do Jet Lag/fisiopatologia , Fases do Sono/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Animais , Relógios Circadianos/fisiologia , Eletrocorticografia/métodos , Epilepsias Mioclônicas/genética , Feminino , Síndrome do Jet Lag/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Transtornos do Sono-Vigília/genética
4.
Front Physiol ; 8: 864, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163208

RESUMO

The mammalian circadian system is controlled by a central oscillator located in the suprachiasmatic nuclei (SCN) of the hypothalamus, in which glia appears to play a prominent role. Gliomas originate from glial cells and are the primary brain tumors with the highest incidence and mortality. Optic pathway/hypothalamic gliomas account for 4-7% of all pediatric intracranial tumors. Given the anatomical location, which compromises both the circadian pacemaker and its photic input pathway, we decided to study whether the presence of gliomas in the hypothalamic region could alter circadian behavioral outputs. Athymic nude mice implanted with LN229 human glioma cells showed an increase in the endogenous period of the circadian clock, which was also less robust in terms of sustaining the free running period throughout 2 weeks of screening. We also found that implanted mice showed a slower resynchronization rate after an abrupt 6 h advance of the light-dark (LD) cycle, advanced phase angle, and a decreased direct effect of light in general activity (masking), indicating that hypothalamic tumors could also affect photic sensitivity of the circadian clock. Our work suggests that hypothalamic gliomas have a clear impact both on the endogenous pacemaking of the circadian system, as well as on the photic synchronization of the clock. These findings strongly suggest that the observation of altered circadian parameters in patients might be of relevance for glioma diagnosis.

5.
Proc Natl Acad Sci U S A ; 113(48): E7837-E7845, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849618

RESUMO

Circadian rhythms are based on endogenous clocks that allow organisms to adjust their physiology and behavior by entrainment to the solar day and, in turn, to select the optimal times for most biological variables. Diverse model systems-including mice, flies, fungi, plants, and bacteria-have provided important insights into the mechanisms of circadian rhythmicity. However, the general principles that govern the circadian clock of Caenorhabditis elegans have remained largely elusive. Here we report robust molecular circadian rhythms in C elegans recorded with a bioluminescence assay in vivo and demonstrate the main features of the circadian system of the nematode. By constructing a luciferase-based reporter coupled to the promoter of the suppressor of activated let-60 Ras (sur-5) gene, we show in both population and single-nematode assays that C elegans expresses ∼24-h rhythms that can be entrained by light/dark and temperature cycles. We provide evidence that these rhythms are temperature-compensated and can be re-entrained after phase changes of the synchronizing agents. In addition, we demonstrate that light and temperature sensing requires the photoreceptors LITE and GUR-3, and the cyclic nucleotide-gated channel subunit TAX-2. Our results shed light on C elegans circadian biology and demonstrate evolutionarily conserved features in the circadian system of the nematode.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Ritmo Circadiano , Proteínas Repressoras/genética , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Canais Iônicos/metabolismo , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Medições Luminescentes , Proteínas de Membrana/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...