Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(6): e2200505, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37018447

RESUMO

In recent years, there has been an increased interest in injectable, in situ crosslinking hydrogels due to their minimally invasive application and ability to conform to their environment. Current in situ crosslinking chitosan hydrogels are either mechanically robust with poor biocompatibility and limited biodegradation due to toxic crosslinking agents or the hydrogels are mechanically weak and undergo biodegradation too rapidly due to insufficient crosslinking. Herein, the authors developed and characterized a thermally-driven, injectable chitosan-genipin hydrogel capable of in situ crosslinking at 37 °C that is mechanically robust, biodegradable, and maintain high biocompatibility. The natural crosslinker genipin is utilized as a thermally-driven, non-toxic crosslinking agent. The chitosan-genipin hydrogel's crosslinking kinetics, injectability, viscoelasticity, swelling and pH response, and biocompatibility against human keratinocyte cells are characterized. The developed chitosan-genipin hydrogels are successfully crosslinked at 37 °C, demonstrating temperature sensitivity. The hydrogels maintained a high percentage of swelling over several weeks before degrading in biologically relevant environments, demonstrating mechanical stability while remaining biodegradable. Long-term cell viability studies demonstrated that chitosan-genipin hydrogels have excellent biocompatibility over 7 days, including during the hydrogel crosslinking phase. Overall, these findings support the development of an injectable, in situ crosslinking chitosan-genipin hydrogel for minimally invasive biomedical applications.


Assuntos
Quitosana , Humanos , Quitosana/farmacologia , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Iridoides/farmacologia , Iridoides/química , Cinética
2.
J Biomater Sci Polym Ed ; 30(11): 895-918, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039085

RESUMO

Three-dimensional (3 D) hydrogel scaffolds are an attractive option for tissue regeneration applications because they allow for cell migration, fluid exchange, and can be synthesized to closely mimic the physical properties of the extracellular matrix environment. The material properties of hydrogels play a vital role in cellular migration and differentiation. In light of this, in-depth understanding of material properties is required before such scaffolds can be used to study their influence on cells. Herein, various blends and thicknesses of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogels were synthesized, flash frozen, and dried by lyophilization to create scaffolds with multiscale porosity. Environmental scanning electron microscopy (ESEM) images demonstrated that lyophilization induced microporous voids in the PEGDMA hydrogels while swelling studies show the hydrogels retain their innate swelling properties. Change in pore size was observed between drying methods, polymer blend, and thickness when imaged in the hydrated state. Human adipose-derived stem cells (hASCs) were seeded on lyophilized and non-lyophilized hydrogels to determine if the scaffolds would support cell attachment and proliferation of a clinically relevant cell type. Cell attachment and morphology of the hASCs were evaluated using fluorescence imaging. Qualitative observations in cell attachment and morphology of hASCs on the surface of the different hydrogel spatial configurations indicate these multiscale porosity hydrogels create a suitable scaffold for hASC culture. These findings offer another factor of tunability in creating biomimetic hydrogels for various tissue engineering applications including tissue repair, regeneration, wound healing, and controlled release of growth factors.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Metacrilatos/química , Polietilenoglicóis/química , Alicerces Teciduais/química , Adipócitos/metabolismo , Materiais Biocompatíveis/metabolismo , Adesão Celular , Diferenciação Celular , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Humanos , Hidrogéis/metabolismo , Células-Tronco Mesenquimais/metabolismo , Metacrilatos/metabolismo , Conformação Molecular , Polietilenoglicóis/metabolismo , Porosidade , Reologia , Propriedades de Superfície , Engenharia Tecidual
3.
Mater Sci Eng C Mater Biol Appl ; 98: 612-618, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813064

RESUMO

Biopolymer based hydrogel materials are attractive options for a variety of medical applications, including drug delivery and tissue regeneration because of their innate biomimetic material properties. While biopolymers are typically selected for a specific application based off of their chemical properties; the overall material structure of the resulting hydrogel ultimately relates to its ability to function for its intended application. In view of this, it is imperative that the impact of commonly used drying procedures on hydrogel physical properties is well understood. Herein, the effects of post-synthesis drying techniques: air-drying and lyophilization, on genipin crosslinked chitosan hydrogel physical structure were studied. Chitosan-genipin hydrogels synthesized out of either 15 kDa MW or 50-190 kDa MW chitosan were either air-dried (AD), flash-frozen (FF) and then lyophilized, or step-down frozen (SD) and then lyophilized. Environmental scanning electron microscopy (ESEM) was employed to evaluate the resulting hydrogels physical structure as a function of chitosan molecular weight and drying condition. ESEM images revealed the presence of larger microscale pores within the SD samples compared to FF samples, but both treatments yielded the induction of micropore with sizes ranging between 9-400 µm in diameter into the hydrogels. Traditional hydrogel swelling studies were performed to assess the resulting hydrogels swelling profile as a function of chitosan molecular weight and drying treatment. Lyophilized hydrogels showed a five-fold increase in swelling ratio compared to AD hydrogels indicating a change in morphology due to the drying process. The results demonstrate that regardless of polymer molecular weight, post-processing technique had a strong correlation with hydrogel porosity.


Assuntos
Quitosana/química , Hidrogéis/química , Iridoides/química , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura
4.
ACS Appl Bio Mater ; 2(7): 2879-2888, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030822

RESUMO

Chronic wounds are characterized by an increased bacterial presence, alkaline pH, and excessive wound drainage. Hydrogel biomaterials composed of the carbohydrate polymer chitosan are advantageous for wound healing applications because of their innate antimicrobial and hemostatic properties. Here, genipin-cross-linked-chitosan hydrogels were synthesized and characterized, and their in vitro and in vivo performances were evaluated as a viable wound dressing. Characterization studies demonstrate that the developed chitosan-genipin hydrogels were able to neutralize an environmental pH, while averaging ∼230% aqueous solution uptake, demonstrating their use as a perfusive wound dressing. Bacterial activity studies demonstrate the hydrogels' ability to hinder Escherichia coli growth by ∼70%, while remaining biocompatible in vitro to fibroblast and keratinocyte cells. Furthermore, chitosan-genipin hydrogels promote an enhanced immune response and cellular proliferation in induced pressure wounds in mice. All together, these results reflect the potential of the developed hydrogels to be used as a proactive wound dressing.

5.
Regen Biomater ; 5(3): 167-175, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29942649

RESUMO

Coordinated investigations into the interactions between biologically mimicking (biomimetic) material constructs and stem cells advance the potential for the regeneration and possible direct replacement of diseased cells and tissues. Any clinically relevant therapies will require the development and optimization of methods that mass produce fully functional cells and tissues. Despite advances in the design and synthesis of biomaterial scaffolds, one of the biggest obstacles facing tissue engineering is understanding how specific extracellular cues produced by biomaterial scaffolds influence the proliferation and differentiation of various cell sources. Matrix elasticity is one such tailorable property of synthetic scaffolds that is known to differ between tissues. Here, we investigate the interactions between an elastically tailorable polyethylene glycol (PEG)-based hydrogel platform and human bone marrow-derived mesenchymal stem cells (hMSCs). For these studies, two different hydrogel compositions with elastic moduli in the ranges of 50-60 kPa and 8-10 kPa were implemented. Our findings demonstrate that the different elasticities in this platform can produce changes in hMSC morphology and proliferation, indicating that the platform can be implemented to produce changes in hMSC behavior and cell state for a broad range of tissue engineering and regenerative applications. Furthermore, we show that the platform's different elasticities influence stem cell differentiation potential, particularly when promoting stem cell differentiation toward cell types from tissues with stiffer elasticity. These findings add to the evolving and expanding library of information on stem cell-biomaterial interactions and opens the door for continued exploration into PEG-based hydrogel scaffolds for tissue engineering and regenerative medicine applications.

6.
ACS Biomater Sci Eng ; 3(8): 1494-1498, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33429636

RESUMO

Advanced cellular biomanufacturing requires the large-scale production of biocompatible materials that can be utilized in the study of cell-matrix interactions and directed stem cell differentiation as well as the generation of physiologically relevant tissues for therapeutic applications. Herein we describe the development of a hydrogel based platform with tailorable mechanical properties that supports the attachment and proliferation of both pluripotent and multipotent stem cells. The biomimetic hydrogel scaffold generated provides biocompatible compositions for generating various tissue-like elasticities for regenerative medicine applications and advanced biomanufacturing.

7.
Acc Chem Res ; 44(10): 1061-70, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21932809

RESUMO

For decades, researchers and medical professionals have aspired to develop mechanisms for noninvasive treatment and monitoring of pathological conditions within the human body. The emergence of nanotechnology has spawned new opportunities for novel drug delivery vehicles capable of concomitant detection, monitoring, and localized treatment of specific disease sites. In turn, researchers have endeavored to develop an imaging moiety that could be functionalized to seek out specific diseased conditions and could be monitored with conventional clinical imaging modalities. Such nanoscale detection systems have the potential to increase early detection of pathophysiological conditions because they can detect abnormal cells before they even develop into diseased tissue or tumors. Ideally, once the diseased cells are detected, clinicians would like to treat those cells simultaneously. This idea led to the concept of multifunctional carriers that could target, detect, and treat diseased cells. The term "theranostics" has been created to describe this promising area of research that focuses on the combination of diagnostic detection agents with therapeutic drug delivery carriers. Targeted theranostic nanocarriers offer an attractive improvement to disease treatment because of their ability to execute simultaneous functions at targeted diseased sites. Research efforts in the field of theranostics encompass a broad variety of drug delivery vehicles, imaging contrast agents, and targeting modalities for the development of an all-in-one, localized detection and treatment system. Nanotheranostic systems that utilize metallic or magnetic imaging nanoparticles can also be used as thermal therapeutic systems. This Account explores recent advances in the field of nanotheranostics and the various fundamental components of an effective theranostic carrier.


Assuntos
Diagnóstico por Imagem/métodos , Portadores de Fármacos/uso terapêutico , Nanomedicina/métodos , Animais , Linhagem Celular Tumoral , Preparações de Ação Retardada , Portadores de Fármacos/química , Humanos , Terapia de Alvo Molecular , Nanopartículas/química , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...