Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 106: 192-208, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27640952

RESUMO

The monophyletic and Neotropical tribe Helieae of the worldwide family Gentianaceae (Gentianales, Asterids, Angiospermae) is well known for its problematic generic classifications. An initial phylogenetic analysis of Helieae shed light onto the relationships between genera, and indicated that traditional generic limits did not correspond to monophyletic groups. In order to obtain a more thorough understanding of generic relationships within the group, we enhanced sampling within the so-called Symbolanthus clade and performed phylogenetic analyses from DNA sequences from one plastid region (matK) and two nuclear regions (ITS and 5S-NTS), plus 112 morphological characters, which were analyzed separately and in combination, using parsimony and Bayesian approaches. A total of 83 individuals representing 20 genera and 51 species of Helieae were sampled; 13 species were included in this study solely based on their morphological characters. Ancestral character reconstructions were performed to identify potential synapomorphies of clades and patterns of homoplasy in the morphological dataset. Our results demonstrate that Prepusa is sister to the remainder of Helieae. Furthermore, the Macrocarpaea clade, the Irlbachia clade and the Symbolanthus clade were also recovered. Within the Symbolanthus clade, our results confirm that Calolisianthus and Chelonanthus are not monophyletic, and also contest the monophyly of Irlbachia as currently circumscribed. Specifically, two species of Calolisianthus group with the type species of Chelonanthus, while the other Calolisianthus species are more closely related to Tetrapollinia and Symbolanthus. Moreover, the green-white-flowered Chelonanthus species and Adenolisianthus are undoubtedly related to Helia and several analyses support Irlbachia pratensis as more closely related to the lineage including the type species of Chelonanthus described above The addition of new characters and taxa led to higher confidence in the relative position of some clades, as well as provided further support for a new generic circumscription of Calolisianthus, Chelonanthus, and Helia. Even though several morphological characters traditionally used in the taxonomy of the group were shown to be homoplasious, most clades can be diagnosed by a combination of morphological character states.


Assuntos
Gentianaceae/classificação , Teorema de Bayes , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Bases de Dados Genéticas , Flores/genética , Gentianaceae/genética , Filogenia , Plastídeos/genética , RNA Ribossômico 5S/classificação , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
2.
Syst Biol ; 66(2): 145-151, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27486181

RESUMO

Understanding the patterns and processes underlying the uneven distribution of biodiversity across space constitutes a major scientific challenge in systematic biology and biogeography, which largely relies on effectively mapping and making sense of rapidly increasing species occurrence data. There is thus an urgent need for making the process of coding species into spatial units faster, automated, transparent, and reproducible. Here we present SpeciesGeoCoder, an open-source software package written in Python and R, that allows for easy coding of species into user-defined operational units. These units may be of any size and be purely spatial (i.e., polygons) such as countries and states, conservation areas, biomes, islands, biodiversity hotspots, and areas of endemism, but may also include elevation ranges. This flexibility allows scoring species into complex categories, such as those encountered in topographically and ecologically heterogeneous landscapes. In addition, SpeciesGeoCoder can be used to facilitate sorting and cleaning of occurrence data obtained from online databases, and for testing the impact of incorrect identification of specimens on the spatial coding of species. The various outputs of SpeciesGeoCoder include quantitative biodiversity statistics, global and local distribution maps, and files that can be used directly in many phylogeny-based applications for ancestral range reconstruction, investigations of biome evolution, and other comparative methods. Our simulations indicate that even datasets containing hundreds of millions of records can be analyzed in relatively short time using a standard computer. We exemplify the use of SpeciesGeoCoder by inferring the historical dispersal of birds across the Isthmus of Panama, showing that lowland species crossed the Isthmus about twice as frequently as montane species with a marked increase in the number of dispersals during the last 10 million years. [ancestral area reconstruction; biodiversity patterns; ecology; evolution; point in polygon; species distribution data.].


Assuntos
Biodiversidade , Classificação/métodos , Ecologia/métodos , Filogenia , Animais , Aves/classificação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...