Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 691(1-2): 33-42, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21458628

RESUMO

HPLC separations of an unknown sample mixture and a pharmaceutical formulation have been optimized using a recently developed chemometric methodology proposed by W. Dewé et al. in 2004 and improved by P. Lebrun et al. in 2008. This methodology is based on experimental designs which are used to model retention times of compounds of interest. Then, the prediction accuracy and the optimal separation robustness, including the uncertainty study, were evaluated. Finally, the design space (ICH Q8(R1) guideline) was computed as the probability for a criterion to lie in a selected range of acceptance. Furthermore, the chromatograms were automatically read. Peak detection and peak matching were carried out with a previously developed methodology using independent component analysis published by B. Debrus et al. in 2009. The present successful applications strengthen the high potential of these methodologies for the automated development of chromatographic methods.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Algoritmos , Automação , Modelos Químicos , Projetos de Pesquisa
2.
Talanta ; 79(1): 77-85, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19376347

RESUMO

One of the major issues within the context of the fully automated development of chromatographic methods consists of the automated detection and identification of peaks coming from complex samples such as multi-component pharmaceutical formulations or stability studies of these formulations. The same problem can also occur with plant materials or biological matrices. This step is thus critical and time-consuming, especially when a Design of Experiments (DOE) approach is used to generate chromatograms. The use of DOE will often maximize the changes of the analytical conditions in order to explore an experimental domain. Unfortunately, this generally provides very different and "unpredictable" chromatograms which can be difficult to interpret, thus complicating peak detection and peak tracking (i.e. matching peaks among all the chromatograms). In this context, Independent Components Analysis (ICA), a new statistically based signal processing methods was investigated to solve this problem. The ICA principle assumes that the observed signal is the resultant of several phenomena (known as sources) and that all these sources are statistically independent. Under those assumptions, ICA is able to recover the sources which will have a high probability of representing the constitutive components of a chromatogram. In the present study, ICA was successfully applied for the first time to HPLC-UV-DAD chromatograms and it was shown that ICA allows differentiation of noise and artifact components from those of interest by applying clustering methods based on high-order statistics computed on these components. Furthermore, on the basis of the described numerical strategy, it was also possible to reconstruct a cleaned chromatogram with minimum influence of noise and baseline artifacts. This can present a significant advance towards the objective of providing helpful tools for the automated development of liquid chromatography (LC) methods. It seems that analytical investigations could be shortened when using this type of methodologies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Misturas Complexas/análise , Processamento de Sinais Assistido por Computador , Automação , Cromatografia Líquida de Alta Pressão/instrumentação , Análise por Conglomerados , Análise de Componente Principal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...