Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 676751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434216

RESUMO

Telomeres form the ends of linear chromosomes and usually comprise protein complexes that bind to simple repeated sequence motifs that are added to the 3' ends of DNA by the telomerase reverse transcriptase (TERT). One of the primary functions attributed to telomeres is to solve the "end-replication problem" which, if left unaddressed, would cause gradual, inexorable attrition of sequences from the chromosome ends and, eventually, loss of viability. Telomere-binding proteins also protect the chromosome from 5' to 3' exonuclease action, and disguise the chromosome ends from the double-strand break repair machinery whose illegitimate action potentially generates catastrophic chromosome aberrations. Telomeres are of special interest in the blast fungus, Pyricularia, because the adjacent regions are enriched in genes controlling interactions with host plants, and the chromosome ends show enhanced polymorphism and genetic instability. Previously, we showed that telomere instability in some P. oryzae strains is caused by novel retrotransposons (MoTeRs) that insert in telomere repeats, generating interstitial telomere sequences that drive frequent, break-induced rearrangements. Here, we sought to gain further insight on telomeric involvement in shaping Pyricularia genome architecture by characterizing sequence polymorphisms at chromosome ends, and surrounding internalized MoTeR loci (relics) and interstitial telomere repeats. This provided evidence that telomere dynamics have played historical, and likely ongoing, roles in shaping the Pyricularia genome. We further demonstrate that even telomeres lacking MoTeR insertions are poorly preserved, such that the telomere-adjacent sequences exhibit frequent presence/absence polymorphism, as well as exchanges with the genome interior. Using TERT knockout experiments, we characterized chromosomal responses to failed telomere maintenance which suggested that much of the MoTeR relic-/interstitial telomere-associated polymorphism could be driven by compromised telomere function. Finally, we describe three possible examples of a phenomenon known as "Adaptive Telomere Failure," where spontaneous losses of telomere maintenance drive rapid accumulation of sequence polymorphism with possible adaptive advantages. Together, our data suggest that telomere maintenance is frequently compromised in Pyricularia but the chromosome alterations resulting from telomere failure are not as catastrophic as prior research would predict, and may, in fact, be potent drivers of adaptive polymorphism.

2.
Curr Opin Plant Biol ; 16(4): 480-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23850071

RESUMO

Epichloae (Epichloë and Neotyphodium species; Clavicipitaceae) are fungi that live in systemic symbioses with cool-season grasses, and many produce alkaloids that are deterrent or toxic to herbivores. The epichloae colonize much of the aerial plant tissues, and most benignly colonize host seeds to transmit vertically. Of their four chemical classes of alkaloids, the ergot alkaloids and indole-diterpenes are active against mammals and insects, whereas peramine and lolines specifically affect insects. Comparative genomic analysis of Clavicipitaceae reveals a distinctive feature of the epichloae, namely, large repeat blocks in their alkaloid biosynthesis gene loci. Such repeat blocks can facilitate gene losses, mutations, and duplications, thus enhancing diversity of alkaloid structures within each class. We suggest that alkaloid diversification is selected especially in the vertically transmissible epichloae.


Assuntos
Alcaloides/genética , Epichloe/fisiologia , Evolução Molecular , Neotyphodium/fisiologia , Poaceae/microbiologia , Alcaloides/metabolismo , Epichloe/genética , Neotyphodium/genética , Poaceae/fisiologia , Simbiose
3.
PLoS Genet ; 9(2): e1003323, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468653

RESUMO

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


Assuntos
Alcaloides , Claviceps , Epichloe , Alcaloides de Claviceps , Seleção Genética , Alcaloides/química , Alcaloides/classificação , Alcaloides/genética , Alcaloides/metabolismo , Claviceps/genética , Claviceps/metabolismo , Claviceps/patogenicidade , Epichloe/genética , Epichloe/metabolismo , Epichloe/patogenicidade , Alcaloides de Claviceps/genética , Alcaloides de Claviceps/metabolismo , Regulação Fúngica da Expressão Gênica , Hypocreales/genética , Hypocreales/metabolismo , Neotyphodium , Poaceae/genética , Poaceae/metabolismo , Poaceae/parasitologia , Simbiose/genética
4.
PLoS One ; 7(6): e39291, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720090

RESUMO

The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44-53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25-44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14-32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2-7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade.


Assuntos
Geografia , Filogenia , Sarraceniaceae/classificação
5.
Mol Biol Evol ; 23(11): 2175-90, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16916942

RESUMO

The chloroplast genome of Pelargonium x hortorum has been completely sequenced. It maps as a circular molecule of 217,942 bp and is both the largest and most rearranged land plant chloroplast genome yet sequenced. It features 2 copies of a greatly expanded inverted repeat (IR) of 75,741 bp each and, consequently, diminished single-copy regions of 59,710 and 6,750 bp. Despite the increase in size and complexity of the genome, the gene content is similar to that of other angiosperms, with the exceptions of a large number of pseudogenes, the recognition of 2 open reading frames (ORF56 and ORF42) in the trnA intron with similarities to previously identified mitochondrial products (ACRS and pvs-trnA), the losses of accD and trnT-ggu and, in particular, the presence of a highly divergent set of rpoA-like ORFs rather than a single, easily recognized gene for rpoA. The 3-fold expansion of the IR (relative to most angiosperms) accounts for most of the size increase of the genome, but an additional 10% of the size increase is related to the large number of repeats found. The Pelargonium genome contains 35 times as many 31 bp or larger repeats than the unrearranged genome of Spinacia. Most of these repeats occur near the rearrangement hotspots, and 2 different associations of repeats are localized in these regions. These associations are characterized by full or partial duplications of several genes, most of which appear to be nonfunctional copies or pseudogenes. These duplications may also be linked to the disruption of at least 1 but possibly 2 or 3 operons. We propose simple models that account for the major rearrangements with a minimum of 8 IR boundary changes and 12 inversions in addition to several insertions of duplicated sequence.


Assuntos
Cloroplastos/genética , Evolução Molecular , Rearranjo Gênico , Genoma de Planta , Pelargonium/genética , Mapeamento Cromossômico , Ordem dos Genes , Modelos Genéticos , Dados de Sequência Molecular , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...