Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36850662

RESUMO

Hand gesture recognition applications based on surface electromiographic (sEMG) signals can benefit from on-device execution to achieve faster and more predictable response times and higher energy efficiency. However, deploying state-of-the-art deep learning (DL) models for this task on memory-constrained and battery-operated edge devices, such as wearables, requires a careful optimization process, both at design time, with an appropriate tuning of the DL models' architectures, and at execution time, where the execution of large and computationally complex models should be avoided unless strictly needed. In this work, we pursue both optimization targets, proposing a novel gesture recognition system that improves upon the state-of-the-art models both in terms of accuracy and efficiency. At the level of DL model architecture, we apply for the first time tiny transformer models (which we call bioformers) to sEMG-based gesture recognition. Through an extensive architecture exploration, we show that our most accurate bioformer achieves a higher classification accuracy on the popular Non-Invasive Adaptive hand Prosthetics Database 6 (Ninapro DB6) dataset compared to the state-of-the-art convolutional neural network (CNN) TEMPONet (+3.1%). When deployed on the RISC-V-based low-power system-on-chip (SoC) GAP8, bioformers that outperform TEMPONet in accuracy consume 7.8×-44.5× less energy per inference. At runtime, we propose a three-level dynamic inference approach that combines a shallow classifier, i.e., a random forest (RF) implementing a simple "rest detector" with two bioformers of different accuracy and complexity, which are sequentially applied to each new input, stopping the classification early for "easy" data. With this mechanism, we obtain a flexible inference system, capable of working in many different operating points in terms of accuracy and average energy consumption. On GAP8, we obtain a further 1.03×-1.35× energy reduction compared to static bioformers at iso-accuracy.


Assuntos
Fontes de Energia Elétrica , Gestos , Humanos , Fenômenos Físicos , Bases de Dados Factuais , Fadiga
2.
Funct Neurol ; 28(3): 191-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24139655

RESUMO

Understanding how the brain manages billions of processing units connected via kilometers of fibers and trillions of synapses, while consuming a few tens of Watts could provide the key to a completely new category of hardware (neuromorphic computing systems). In order to achieve this, a paradigm shift for computing as a whole is needed, which will see it moving away from current "bit precise" computing models and towards new techniques that exploit the stochastic behavior of simple, reliable, very fast, lowpower computing devices embedded in intensely recursive architectures. In this paper we summarize how these objectives will be pursued in the Human Brain Project.


Assuntos
Encéfalo/fisiologia , Simulação por Computador , Redes Neurais de Computação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...