Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(19): 13216-22, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27117343

RESUMO

Oxygen electrodes have been able to meet area specific resistance targets for solid oxide cell operating temperatures as low as ∼500 °C, but their stability over expected device operation times of up to 50 000 h is unknown. Achieving good performance at such temperatures requires mixed ionically and electronically-conducting electrodes with nano-scale structure that makes the electrode susceptible to particle coarsening and, as a result, electrode resistance degradation. Here we describe accelerated life testing of nanostructured Sm0.5Sr0.5CoO3-Ce0.9Gd0.1O2 electrodes combining impedance spectroscopy and microstructural evaluation. Measured electrochemical performance degradation is accurately fitted using a coarsening model that is then used to predict cell operating conditions where required performance and long-term stability are both achieved. A new electrode material figure of merit based on both performance and stability metrics is proposed. An implication is that cation diffusion, which determines the coarsening rate, must be considered along with oxygen transport kinetics in the selection of optimal electrode materials.

4.
Faraday Discuss ; 182: 97-111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26212555

RESUMO

Co-electrolysis of carbon dioxide and steam has been shown to be an efficient way to produce syngas, however further optimisation requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the solid oxide cell (SOC) during operation. Whilst electrochemical measurements are currently conducted in situ, many analytical techniques can only be used ex situ and may even be destructive to the cell (e.g. SEM imaging of the microstructure). In order to fully understand and characterise co-electrolysis, in situ monitoring of the reactants, products and SOC is necessary. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) is ideal for in situ monitoring of co-electrolysis as both gaseous and adsorbed CO and CO2 species can be detected, however it has previously not been used for this purpose. The challenges of designing an experimental rig which allows optical access alongside electrochemical measurements at high temperature and operates in a dual atmosphere are discussed. The rig developed has thus far been used for symmetric cell testing at temperatures from 450 °C to 600 °C. Under a CO atmosphere, significant changes in spectra were observed even over a simple Au|10Sc1CeSZ|Au SOC. The changes relate to a combination of CO oxidation, the water gas shift reaction, carbonate formation and decomposition processes, with the dominant process being both potential and temperature dependent.

5.
Phys Chem Chem Phys ; 14(44): 15379-92, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23060257

RESUMO

Nano-composite Sm(0.5)Sr(0.5)CoO(3-δ) (SSC)-Ce(0.9)Gd(0.1)O(1.95) (GDC) and La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ) (LSCF)-GDC Solid Oxide Fuel Cell (SOFC) cathodes with various infiltrate loading levels were prepared through multiple nitrate solution infiltrations into porous GDC ionic conducting (IC) scaffolds. Microstructural analyses indicated that the average SSC and average LSCF hemispherical particle radii remained roughly constant, at 25 nm, across multiple infiltration-gelation-firing sequences. Comparisons between symmetric cell polarization resistance measurements and Simple Infiltrated Microstructure Polarization Loss Estimation (SIMPLE) model predictions showed that the SIMPLE model was able to predict the performance of heavily infiltrated SSC-GDC and LSCF-GDC cathodes with accuracies better than 55% and 70%, respectively (without the use of fitting parameters). Poor electronic conduction between mixed ionic electronic conducting (MIEC) infiltrate particles was found in lightly infiltrated cathodes. Since these electronic conduction losses were not accounted for by the SIMPLE model, larger discrepancies between the SIMPLE-model-predicted and measured polarization resistances were observed for lightly infiltrated cathodes. This work demonstrates that the SIMPLE model can be used to quickly determine the lowest possible polarization resistance of a variety of infiltrated MIEC on IC nano-composite cathodes (NCC's) when the NCC microstructure and an experimentally-applicable set of intrinsic MIEC oxygen surface resistances and IC bulk oxygen conductivities are known. Currently, this model is the only one capable of predicting the polarization resistance of heavily infiltrated MIEC on IC NCC's as a function of temperature, cathode thickness, nano-particle size, porosity, and composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...