Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-22481766

RESUMO

This paper focuses on the technical differentiation of film bulk acoustic resonator (FBAR) technology from other mechanical resonator technologies for timing applications. The paper will touch on a recent modification of FBARs, the zero-drift resonator (ZDR), that is temperature compensated. One technology differentiator is the size of the chip-scale packaged resonator. Another is that the silicon lid is perfectly suitable for placement of integrated circuits and this is currently being done. Many factors (wide tuning range, high Q, high frequency, small size, integrated circuitry) are being used to differentiate potential products for the time and frequency markets.

2.
Artigo em Inglês | MEDLINE | ID: mdl-16764453

RESUMO

A novel, suspended thin film bulk acoustic wave resonator (SFBAR) has been fabricated from an aluminum nitride film sputtered directly on a (100) silicon substrate. The suspended membrane design uses thin beams to support, as well as electrically connect, the resonator and has been fabricated using both thin film processing and bulk silicon micromachining. The quality factor and the effective electromechanical coupling coefficient were characterized as a function of the number and the length of the support beams. The length of the support beams was found to affect neither the quality factor at resonance nor the effective electromechanical coupling factor. However, longer support beams did facilitate better frequency pair response. Device performance varied with the number of support beams: 70% of the resonators tested showed a higher figure of merit with eight support beams than with four support beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA