Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 20(6): 2241-2251, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31046242

RESUMO

In order to move away from traditional petrochemical-based polymer materials, it is imperative that new monomer systems be sought out based on renewable resources. In this work, the synthesis of a functional terpene-containing acrylate monomer (tetrahydrogeraniol acrylate, THGA) is reported. This monomer was polymerized in toluene and bulk via free-radical polymerizations, achieving high conversion and molecular weights up to 278 kg·mol-1. The synthesized poly(THGA) shows a relatively low Tg (-46 °C), making it useful as a replacement for low Tg acrylic monomers, such as the widely used n-butyl acrylate. RAFT polymerization in toluene ([M]0 = 3.6 mol·L-1) allowed for the well-controlled polymerization of THGA with degrees of polymerization (DP n) from 25 to 500, achieving narrow molecular weight distributions ( D̵ ≈ 1.2) even up to high conversions. At lower monomer concentrations ([M]0 = 1.8 mol·L-1), some evidence of intramolecular chain transfer to polymer was seen by the detection of branching (arising from propagation of midchain radicals) and terminal double bonds (arising from ß-scission of midchain radicals). Poly(THGA) was subsequently utilized for the synthesis of poly(THGA)- b-poly(styrene)- b-poly(THGA) and poly(styrene)- b-poly(THGA)- b-poly(styrene) triblock copolymers, demonstrating its potential as a component of thermoplastic elastomers. The phase separation and mechanical properties of the resulting triblock copolymer were studied by atomic force microscopy and rheology.


Assuntos
Acrilatos/química , Elastômeros , Polimerização , Terpenos/química , Elastômeros/síntese química , Elastômeros/química
2.
ACS Appl Mater Interfaces ; 8(48): 33307-33315, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934152

RESUMO

A new approach for the elaboration of low molecular weight pressure-sensitive adhesives based on supramolecular chemistry is explored. The synthesis of model systems coupled with probe-tack tests and rheological experiments highlights the influence of the transient network formed by supramolecular bonds on the adhesion energy. The first step of our approach consists of synthesizing poly(butyl acrylate-co-glycidyl methacrylate) copolymers from a difunctional initiator able to self-associate by four hydrogen bonds between urea groups. Linear copolymers with a low dispersity (Mn = 10 kg/mol, Ip < 1.4) have been synthesized via atom transfer radical polymerization. Films of the copolymers were then partially cross-linked through reaction of the epoxy functions with a diamine. The systematic variation of the average ratio of glycidyl methacrylate and diamine per copolymer shed light on the respective role played by the supramolecular interactions (between bis-urea groups and with the side chains) and by the chain extension and branching induced by the diamine/epoxy reaction. In this strategy, the adhesive performance can be optimized by modifying the strength of "stickers" (via the structure of the supramolecular initiator, for instance) and the polymer network (e.g., via the length and level of branching of the copolymer chains) in order to approach commercial PSA-like properties (high debonding energy and clean removal).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...