Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 21(10): 1080-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25997084

RESUMO

Stem cells expressing reporter constructs are extremely useful for their tracking in vivo or for determining cell lineage fate in vivo and in vitro. We generated liver progenitor cell (LPC) lines from actin-EGFP and TAT-GRE-lacZ mice. LPCs from the actin-EGFP mouse facilitate cell tracing following transplant as the reporter is constitutively expressed. LPCs from the TAT-GRE-lacZ mouse express ß-galactosidase under the control of the tyrosine aminotransferase (TAT) promoter and are only active in mature hepatocytes. We found that the utility of such LPC lines becomes severely limited by downregulation of transgene expression following extended culture. We show that epigenetic mechanisms are responsible for suppressing expression of both transgenes. Enhancement of transgene expression in both LPC lines was achieved by treating the cell lines with either the histone acetylating agent sodium butyrate or the DNA demethylating agent 5-azacytidine.


Assuntos
Diferenciação Celular , Epigênese Genética , Hepatócitos/metabolismo , Fígado/metabolismo , Células-Tronco/metabolismo , Animais , Linhagem Celular , Genes Reporter , Fígado/citologia , Camundongos , Especificidade de Órgãos , Células-Tronco/citologia , Tirosina Transaminase
2.
PLoS One ; 5(1): e8620, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20062539

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a "death ligand"-a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-kappaB and JNK signalling pathways. To determine the role of TGF-beta-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1-/- MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-kappaB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-kappaB, protected TAK1-/- MEFs against TRAIL killing, suggesting that TAK1 activation of NF-kappaB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-kappaB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1-/- MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1-NF-kappaB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Sobrevivência Celular/fisiologia , MAP Quinase Quinase Quinases/fisiologia , NF-kappa B/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , Sequência de Bases , Caspase 8/metabolismo , Células Cultivadas , Primers do DNA , Fibroblastos/citologia , Camundongos , Camundongos Knockout , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...