Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 9347-9362, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767505

RESUMO

Correspondence analysis (CA) is a multivariate statistical tool used to visualize and interpret data dependencies by finding maximally correlated embeddings of pairs of random variables. CA has found applications in fields ranging from epidemiology to social sciences. However, current methods for CA do not scale to large, high-dimensional datasets. In this paper, we provide a novel interpretation of CA in terms of an information-theoretic quantity called the principal inertia components. We show that estimating the principal inertia components, which consists in solving a functional optimization problem over the space of finite variance functions of two random variable, is equivalent to performing CA. We then leverage this insight to design algorithms to perform CA at scale. Specifically, we demonstrate how the principal inertia components can be reliably approximated from data using deep neural networks. Finally, we show how the maximally correlated embeddings of pairs of random variables in CA further play a central role in several learning problems including multi-view and multi-modal learning methods and visualization of classification boundaries.


Assuntos
Algoritmos , Aprendizado de Máquina , Redes Neurais de Computação
2.
Entropy (Basel) ; 22(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33287090

RESUMO

Information bottleneck (IB) and privacy funnel (PF) are two closely related optimization problems which have found applications in machine learning, design of privacy algorithms, capacity problems (e.g., Mrs. Gerber's Lemma), and strong data processing inequalities, among others. In this work, we first investigate the functional properties of IB and PF through a unified theoretical framework. We then connect them to three information-theoretic coding problems, namely hypothesis testing against independence, noisy source coding, and dependence dilution. Leveraging these connections, we prove a new cardinality bound on the auxiliary variable in IB, making its computation more tractable for discrete random variables. In the second part, we introduce a general family of optimization problems, termed "bottleneck problems", by replacing mutual information in IB and PF with other notions of mutual information, namely f-information and Arimoto's mutual information. We then argue that, unlike IB and PF, these problems lead to easily interpretable guarantees in a variety of inference tasks with statistical constraints on accuracy and privacy. While the underlying optimization problems are non-convex, we develop a technique to evaluate bottleneck problems in closed form by equivalently expressing them in terms of lower convex or upper concave envelope of certain functions. By applying this technique to a binary case, we derive closed form expressions for several bottleneck problems.

3.
Epidemics ; 27: 59-65, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30902616

RESUMO

The recent Zika virus (ZIKV) epidemic in the Americas ranks among the largest outbreaks in modern times. Like other mosquito-borne flaviviruses, ZIKV circulates in sylvatic cycles among primates that can serve as reservoirs of spillover infection to humans. Identifying sylvatic reservoirs is critical to mitigating spillover risk, but relevant surveillance and biological data remain limited for this and most other zoonoses. We confronted this data sparsity by combining a machine learning method, Bayesian multi-label learning, with a multiple imputation method on primate traits. The resulting models distinguished flavivirus-positive primates with 82% accuracy and suggest that species posing the greatest spillover risk are also among the best adapted to human habitations. Given pervasive data sparsity describing animal hosts, and the virtual guarantee of data sparsity in scenarios involving novel or emerging zoonoses, we show that computational methods can be useful in extracting actionable inference from available data to support improved epidemiological response and prevention.


Assuntos
Primatas/virologia , Infecção por Zika virus/epidemiologia , Zika virus/patogenicidade , Zoonoses/epidemiologia , Zoonoses/virologia , Animais , Teorema de Bayes , Humanos , Risco , Infecção por Zika virus/patologia , Zoonoses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...