Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-21244996

RESUMO

In this paper, we present a configurable multispectral imaging system based on an acousto-optic tunable filter (AOTF). Typically, AOTFs are used to filter a single wavelength at a time, but thanks to the use of a versatile sweeping frequency generator implemented with a direct digital synthesizer, the imager may capture a configurable spectral range. Experimental results show a good spectral and imaging response of the system for spectral bandwidth up to a 50 nm.

2.
Artif Intell Med ; 31(3): 197-209, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15302086

RESUMO

Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coefficient) and statistical (analysis of variance, ANOVA) measures allows us to select the best recovery model. Finally, finite impulse response (FIR) and gamma neural networks are included in the adaptive noise cancellation (ANC) scheme in order to provide highly non-linear, dynamic capabilities to the recovery model. Neural networks are benchmarked with classical adaptive methods such as the least mean squares (LMS) and the normalized LMS (NLMS) algorithms in simulated and real registers and some conclusions are drawn. For synthetic registers, the most determinant factor in the identification of the models is the foetal-maternal signal-to-noise ratio (SNR). In addition, as the electromyogram contribution becomes more relevant, neural networks clearly outperform the LMS-based algorithm. From the ANOVA test, we found statistical differences between LMS-based models and neural models when complex situations (high foetal-maternal and foetal-noise SNRs) were present. These conclusions were confirmed after doing robustness tests on synthetic registers, visual inspection of the recovered signals and calculation of the recognition rates of foetal R-peaks for real situations. Finally, the best compromise between model complexity and outcomes was provided by the FIR neural network. Both the methodology for selecting a model and the introduction of advanced neural models are the main contributions of this paper.


Assuntos
Eletrocardiografia , Coração Fetal/fisiologia , Modelos Cardiovasculares , Redes Neurais de Computação , Feminino , Humanos , Valor Preditivo dos Testes , Gravidez , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...