Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7245, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903723

RESUMO

Seismic reflectors in the uppermost mantle, which can indicate past plate tectonic subduction, are exceedingly rare below Archaean cratons, and restricted to the Neoarchaean. Here we present reprocessed seismic reflection profiles from the northwest Archaean Yilgarn Craton and the Palaeoproterozoic Capricorn Orogen of western Australia that reveal the existence of a ~4 km thick south-dipping band of seismic reflectors that extends from the base of the Archaean crust to at least 60 km depth. We interpret these reflectors, which lie south of a ~50 km deep crustal root, as a relict suture zone within the lithosphere. We suggest that the mantle reflectors were created either by subduction of an oceanic plate along the northern edge of the Yilgarn Craton, which started in the Mesoarchaean and produced the rocks in northern Yilgarn greenstone belts that formed in a supra-subduction zone setting, or, alternatively, by underthrusting of continental crust deep into the lithosphere during the Palaeoproterozoic.

2.
Nat Commun ; 11(1): 3874, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747641

RESUMO

In subduction zones, landward dipping regions of low shear wave velocity and elevated Poisson's ratio, which can extend to at least 120 km depth, are interpreted to be all or part of the subducting igneous oceanic crust. This crust is considered to be overpressured, because fluids within it are trapped beneath an impermeable seal along the overlying inter-plate boundary. Here we show that during slow slip on the plate boundary beneath southern Vancouver Island, low frequency earthquakes occur immediately below both the landward dipping region of high Poisson's ratio and a 6-10 km thick shear zone revealed by seismic reflections. The plate boundary here either corresponds to the low frequency earthquakes or to the anomalous elastic properties in the lower 3-5 km of the shear zone immediately above them. This zone of high Poisson's ratio, which approximately coincides with an electrically conductive layer, can be explained by slab-derived fluids trapped at near-lithostatic pore pressures.

3.
Nature ; 428(6979): 163-7, 2004 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15014496

RESUMO

At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA