Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973597

RESUMO

The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.

2.
FASEB J ; 18(13): 1553-5, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15319364

RESUMO

An accelerated activity of the GD3 synthase (ST8), with consequent GD3 accumulation, is part of the response to environmental stressors in different cell types. Depending on specific, yet largely undefined, cellular settings, this can be followed by adaptation or apoptosis, the latter mostly due to GD3-induced mitochondrial damage. Here we show that subcellular localization of ST8 could significantly affect the biological outcome of GD3 accumulation. Binding to the molecular chaperone calnexin causes the retention of ST8 within the endoplasmic reticulum (ER) and prevents its relocalization to the Golgi. Calnexin-dependent ER retention does not affect the activity of ST8; yet the de novo synthesized GD3 largely fails to reach the mitochondria. Accordingly, overexpression of calnexin suppresses the pro-apoptotic activity of ST8, while the loss of calnexin sensitizes the cells to ST8-induced apoptosis. Reconstitution of calnexin confers protection to deficient cells. Thus, calnexin controls the biological outcome of GD3 accumulation and reveals a novel role in the stress response.


Assuntos
Apoptose , Calnexina/metabolismo , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo , Animais , Calnexina/genética , Linhagem Celular , Galinhas , Cricetinae , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Mitocôndrias/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...