Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Res Eur ; 2: 84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645270

RESUMO

Background: Photocatalytic air purifiers based on nano-titanium dioxide (TiO 2) visible light activation provide an efficient solution for removing and degrading contaminants in air. The potential detachment of TiO 2 particles from the air purifier to indoor air could cause a safety concern. A TiO 2 release potential was measured for one commercially available photocatalytic air purifier "Gearbox Wivactive" to ensure a successful implementation of the photocatalytic air purifying technology. Methods: In this study, the TiO 2 release was studied under laboratory-simulated conditions from a  Gearbox Wivactive consisting of ceramic honeycombs coated with photocatalytic nitrogen doped TiO 2 particles. The TiO 2 particle release factor was measured in scalable units according to the photoactive surface area and volume flow (TiO 2-ng/m 2×m 3). The impact of  Gearbox Wivactive on indoor concentration level under reasonable worst-case conditions was predicted by using the release factor and a well-mixed indoor aerosol model. Results: The instrumentation and experimental setup was not sufficiently sensitive to quantify the emissions from the photoactive surfaces. The upper limit for TiO 2 mass release was <185×10 -3 TiO 2-ng/m 2×m 3. Under realistic conditions the TiO 2 concentration level in a 20 m 3 room ventilated at rate of 0.5 1/h and containing two Gearbox Wivactive units resulted <20×10 -3 TiO 2-ng/m 3. Conclusions: The release potential was quantified for a photocatalytic surface in generalized units that can be used to calculate the emission potential for different photocatalytic surfaces used in various operational conditions. This study shows that the TiO 2 nanoparticle release potential was low in this case and the release does not cause relevant exposure as compared to proposed occupational exposure limit values for nanosized TiO 2. The TiO 2 release risk was adequately controlled under reasonable worst-case operational conditions.

2.
Sensors (Basel) ; 18(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360572

RESUMO

Nowadays a recognized need for accurate observations of atmospheric aerosols (AEs) and reactive gases (RGs) exists in the framework of regional, national and global near-surface networks based on permanent or mobile measurement stations. In this context, a paramount and not-trivial issue is related to the correct execution of continuous sampling of ambient air and its subsequent distribution to measurement analyzers hosted inside the stations. Sampling artifacts must be minimized for obtaining reliable pictures of ambient air composition. To respond to this need, a suite of novel "smart" and relatively low-cost systems for the continuous sampling of ambient air was developed in the framework of the 2012⁻2015 I-AMICA Project. These systems were designed to execute AE and RG measurements according with WMO/GAW and ACTRIS recommendations and standard operation procedures. A particular attention was dedicated to the stabilization and control of the sampling flow rates and temperatures. The analysis of one full year of operations at the WMO/GAW regional station of Capo Granitola (GAW ID: CGR, Italy), allowed to conclude that these systems are effective in meeting the technical requirements for correct execution of AE and RG measurements.

3.
Proc Natl Acad Sci U S A ; 105(41): 15666-71, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18852453

RESUMO

Rising air pollution levels in South Asia will have worldwide environmental consequences. Transport of pollutants from the densely populated regions of India, Pakistan, China, and Nepal to the Himalayas may lead to substantial radiative forcing in South Asia with potential effects on the monsoon circulation and, hence, on regional climate and hydrological cycles, as well as to dramatic impacts on glacier retreat. An improved description of particulate sources is needed to constrain the simulation of future regional climate changes. Here, the first evidence of very frequent new particle formation events occurring up to high altitudes is presented. A 16-month record of aerosol size distribution from the Nepal Climate Observatory at Pyramid (Nepal, 5,079 m above sea level), the highest atmospheric research station, is shown. Aerosol concentrations are driven by intense ultrafine particle events occurring on >35% of the days at the interface between clean tropospheric air and the more polluted air rising from the valleys. During a pilot study, we observed a significant increase of ion cluster concentrations with the onset of new particle formation events. The ion clusters rapidly grew to a 10-nm size within a few hours, confirming, thus, that in situ nucleation takes place up to high altitudes. The initiation of the new particle events coincides with the shift from free tropospheric downslope winds to thermal upslope winds from the valley in the morning hours. The new particle formation events represent a very significant additional source of particles possibly injected into the free troposphere by thermal winds.


Assuntos
Poluentes Atmosféricos , Altitude , Íons , Nanopartículas , Aerossóis , Movimentos do Ar , Atmosfera , Nepal , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...