Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 444(1): 15-26, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16266687

RESUMO

Rat liver arginase (arginase I) is potently inactivated by diethyl pyrocarbonate, with a second-order rate constant of 113M(-1)s(-1) for the inactivation process at pH 7.0, 25 degrees C. Partial protection from inactivation is provided by the product of the reaction, l-ornithine, while nearly complete protection is afforded by the inhibitor pair, l-ornithine and borate. The role of H141 has been probed by mutagenesis, chemical modulation, and X-ray diffraction. The hyper-reactivity of H141 towards diethyl pyrocarbonate can be explained by its proximity to E277. A proton shuttling role for H141 is supported by its conformational mobility observed among the known arginase structures. H141 is proposed to serve as an acid/base catalyst, deprotonating the metal-bridging water molecule to generate the metal-bridging hydroxide nucleophile, and by protonating the amino group of the product to facilitate its departure.


Assuntos
Arginase/química , Histidina/química , Animais , Arginase/antagonistas & inibidores , Boratos/química , Cristalografia por Raios X , Dietil Pirocarbonato/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ornitina/química , Conformação Proteica , Ratos
2.
J Biol Chem ; 280(4): 2745-9, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15548541

RESUMO

Thrombin is the final protease in the blood coagulation cascade and serves both pro- and anticoagulant functions through the cleavage of several targets. The ability of thrombin to specifically recognize a wide range of substrates derives from interactions that occur outside of the active site of thrombin. Thrombin possesses two anion binding exosites, which mediate many of its interactions with cofactors and substrates, and although many structures of thrombin have been solved, few such interactions have been described in molecular detail. Glycosaminoglycan binding to exosite II of thrombin plays a major role in switching off the procoagulant functions of thrombin by mediating its irreversible inhibition by circulating serpins and by its binding to the endothelial cell surface receptor thrombomodulin. Here we report the 1.85-A structure of human alpha-thrombin bound to a heparin fragment of eight monosaccharide units in length. The asymmetric unit is composed of two thrombin dimers, each sharing a single heparin octasaccharide chain. The observed interactions are fully consistent with previous mutagenesis studies and illustrate on a molecular level the cofactor interaction that is critical for the restriction of clotting to the site of blood vessel injury.


Assuntos
Glicosaminoglicanos/química , Heparina/química , Trombina/química , Ânions , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Modelos Químicos , Modelos Moleculares , Monossacarídeos/química , Ligação Proteica , Conformação Proteica , Eletricidade Estática
3.
J Am Chem Soc ; 126(33): 10278-84, 2004 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-15315440

RESUMO

Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. Chiral L-amino acids bearing aldehyde side chains have been synthesized in which the electrophilic aldehyde C=O bond is isosteric with the C=N bond of L-arginine. This substitution is intended to facilitate nucleophilic attack by the metal-bridging hydroxide ion upon binding to the arginase active site. Syntheses of the amino acid aldehydes have been accomplished by reduction, oxidation, and Wittig-type reaction with a commercially available derivative of L-glutamic acid. Amino acid aldehydes exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, (S)-2-amino-7-oxoheptanoic acid, has been determined at 2.2 A resolution. In the enzyme-inhibitor complex, the inhibitor aldehyde moiety is hydrated to form the gem-diol: one hydroxyl group bridges the Mn(2+)(2) cluster and donates a hydrogen bond to D128, and the second hydroxyl group donates a hydrogen bond to E277. The binding mode of the neutral gem-diol may mimic the binding of the neutral tetrahedral intermediate and its flanking transition states in arginase catalysis.


Assuntos
Aldeídos/química , Aminoácidos/química , Arginase/antagonistas & inibidores , Inibidores Enzimáticos/química , Aldeídos/síntese química , Aldeídos/metabolismo , Aldeídos/farmacologia , Aminoácidos/síntese química , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Arginase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Heptanoicos/síntese química , Ácidos Heptanoicos/química , Cinética , Modelos Moleculares
4.
Biochemistry ; 43(28): 8987-99, 2004 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15248756

RESUMO

Arginase is a manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to form L-ornithine and urea. The structure and stability of the binuclear manganese cluster are critical for catalytic activity as it activates the catalytic nucleophile, metal-bridging hydroxide ion, and stabilizes the tetrahedral intermediate and its flanking states. Here, we report X-ray structures of a series of inhibitors bound to the active site of arginase, and each inhibitor exploits a different mode of coordination with the Mn(2+)(2) cluster. Specifically, we have studied the binding of fluoride ion (F(-); an uncompetitive inhibitor) and L-arginine, L-valine, dinor-N(omega)-hydroxy-L-arginine, descarboxy-nor-N(omega)-hydroxy-L-arginine, and dehydro-2(S)-amino-6-boronohexanoic acid. Some inhibitors, such as fluoride ion, dinor-N(omega)-hydroxy-L-arginine, and dehydro-2(S)-amino-6-boronohexanoic acid, cause the net addition of one ligand to the Mn(2+)(2) cluster. Other inhibitors, such as descarboxy-nor-N(omega)-hydroxy-L-arginine, simply displace the metal-bridging hydroxide ion of the native enzyme and do not cause any net change in the metal coordination polyhedra. The highest affinity inhibitors displace the metal-bridging hydroxide ion (and sometimes occupy a Mn(2+)(A) site found vacant in the native enzyme) and maintain a conserved array of hydrogen bonds with their alpha-amino and -carboxylate groups.


Assuntos
Arginase/química , Inibidores Enzimáticos/química , Manganês , Animais , Arginase/antagonistas & inibidores , Arginina/análogos & derivados , Arginina/química , Sítios de Ligação , Cristalografia por Raios X , Flúor/química , Ligação de Hidrogênio , Metaloproteínas/antagonistas & inibidores , Metaloproteínas/química , Estrutura Molecular , Ligação Proteica , Ratos , Proteínas Recombinantes , Valina/química
5.
J Am Chem Soc ; 125(43): 13052-7, 2003 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-14570477

RESUMO

Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to form L-ornithine plus urea. Chiral L-amino acids bearing sulfonamide side chains have been synthesized in which the tetrahedral sulfonamide groups are designed to target bridging coordination interactions with the binuclear manganese cluster in the arginase active site. Syntheses of the amino acid sulfonamides have been accomplished by the amination of sulfonyl halide derivatives of (S)-(tert-butoxy)-[(tert-butoxycarbonyl)amino]oxoalkanoic acids. Amino acid sulfonamides with side chains comparable in length to that of L-arginine exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, S-(2-sulfonamidoethyl)-L-cysteine, has been determined at 2.8 A resolution. In the enzyme-inhibitor complex, the sulfonamide group displaces the metal-bridging hydroxide ion of the native enzyme and bridges the binuclear manganese cluster with an ionized NH(-) group. The binding mode of the sulfonamide inhibitor may mimic the binding of the tetrahedral intermediate and its flanking transition states in catalysis. It is notable that the ionized sulfonamide group is an excellent bridging ligand in this enzyme-inhibitor complex; accordingly, the sulfonamide functionality can be considered in the design of inhibitors targeting other binuclear metalloenzymes.


Assuntos
Aminoácidos/química , Arginase/antagonistas & inibidores , Inibidores Enzimáticos/química , Sulfonamidas/química , Aminoácidos/síntese química , Aminoácidos/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Ressonância de Plasmônio de Superfície
6.
Biochemistry ; 42(28): 8445-51, 2003 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-12859189

RESUMO

Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. The X-ray crystal structure of a fully active, truncated form of human arginase II complexed with a boronic acid transition state analogue inhibitor has been determined at 2.7 A resolution. This structure is consistent with the hydrolysis of l-arginine through a metal-activated hydroxide mechanism. Given that human arginase II appears to play a role in regulating l-arginine bioavailability to NO synthase in human penile corpus cavernosum smooth muscle, the inhibition of human arginase II is a potential new strategy for the treatment of erectile dysfunction [Kim, N. N., Cox, J. D., Baggio, R. F., Emig, F. A., Mistry, S., Harper, S. L., Speicher, D. W., Morris, S. M., Ash, D. E., Traish, A. M., and Christianson, D. W. (2001) Biochemistry 40, 2678-2688]. Since NO synthase is found in human clitoral corpus cavernosum and vagina, we hypothesized that human arginase II is similarly present in these tissues and functions to regulate l-arginine bioavailability to NO synthase. Accordingly, hemodynamic studies conducted with a boronic acid arginase inhibitor in vivo are summarized, suggesting that the extrahepatic arginase plays a role in both male and female sexual arousal. Therefore, arginase II is a potential target for the treatment of male and female sexual arousal disorders.


Assuntos
Arginase/química , Nível de Alerta/fisiologia , Hemodinâmica/fisiologia , Sexualidade/fisiologia , Sequência de Aminoácidos , Animais , Arginase/antagonistas & inibidores , Arginase/genética , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X/métodos , Primers do DNA , Inibidores Enzimáticos/farmacologia , Feminino , Variação Genética , Humanos , Isoenzimas , Masculino , Modelos Moleculares , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Coelhos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Deleção de Sequência
7.
Biochemistry ; 42(25): 7748-58, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12820884

RESUMO

Arginase is a binuclear manganese metalloenzyme that hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of D128E, D128N, D232A, D232C, D234E, H101N, and H101E arginases I have been determined by X-ray crystallographic methods to elucidate the roles of the first-shell metal ligands in the stability and catalytic activity of the enzyme. This work represents the first structure-based dissection of the binuclear manganese cluster using site-directed mutagenesis and X-ray crystallography. Substitution of the metal ligands compromises the catalytic activity of the enzyme, either by the loss or disruption of the metal cluster or the nucleophilic metal-bridging hydroxide ion. However, the substitution of the metal ligands or the reduction of Mn(2+)(A) or Mn(2+)(B) occupancy does not compromise enzyme-substrate affinity as reflected by K(M), which remains relatively invariant across this series of arginase variants. This implicates a nonmetal binding site for substrate l-arginine in the precatalytic Michaelis complex, as proposed based on analysis of the native enzyme structure (Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W. (1996) Nature 383, 554-557).


Assuntos
Arginase/metabolismo , Manganês/metabolismo , Substituição de Aminoácidos , Animais , Arginase/genética , Cristalografia por Raios X , Ligantes , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...