Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0307823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511961

RESUMO

Cryptococcus neoformans causes lethal meningitis and accounts for approximately 10%-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this fungus invades the mammalian brain. To investigate the dynamics of C. neoformans tissue invasion, we mapped fungal localization and host cell interactions in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. We confirm high fungal burden in mouse upper airway after nasal inoculation. Yeast in turbinates were frequently titan cells, with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of the upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, by finding viable fungi in the bloodstream of mice a few days after intranasal infection. As early as 24 h post systemic infection, the majority of C. neoformans cells traversed the blood-brain barrier, and were engulfed or in close proximity to microglia. Our work presents a new method for investigating microbial invasion, establishes that C. neoformans can breach multiple tissue barriers within the first days of infection, and demonstrates microglia as the first cells responding to C. neoformans invasion of the brain.IMPORTANCECryptococcal meningitis causes 10%-15% of AIDS-associated deaths globally. Still, brain-specific immunity to cryptococci is a conundrum. By employing innovative imaging, this study reveals what occurs during the first days of infection in brain and in airways. We found that titan cells predominate in upper airways and that cryptococci breach the upper airway mucosa, which implies that, at least in mice, the upper airways are a site for fungal dissemination. This would signify that mucosal immunity of the upper airway needs to be better understood. Importantly, we also show that microglia, the brain-resident macrophages, are the first responders to infection, and microglia clusters are formed surrounding cryptococci. This study opens the field to detailed molecular investigations on airway immune response, how fungus traverses the blood-brain barrier, how microglia respond to infection, and ultimately how microglia monitor the blood-brain barrier to preserve brain function.


Assuntos
Síndrome da Imunodeficiência Adquirida , Criptococose , Cryptococcus neoformans , Meningite , Camundongos , Animais , Microglia , Criptococose/microbiologia , Encéfalo/microbiologia , Mamíferos
2.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36747626

RESUMO

In modern science, interdisciplinary and collaborative research is encouraged among scientists to solve complex problems. However, when the time comes to measure an individual's academic productivity, collaborative efforts are hard to conceptualize and quantify. In this study, we hypothesized that a social behavior coined "scientific civility", which encompasses civility, collaboration, cooperation, or a combination of these, enhances an individual's productivity influencing their academic performance. To facilitate recognition of this unique attribute within the scientific environment, we developed a new indicator: the C score. We examined publicly available data from 1000 academic scientists at the individual-level, focusing on their scholarly output and collaborative networks as a function of geographic distribution and time. Our findings strongly suggest that the C score gauges academic performance from an integral perspective based on a synergistic interaction between productivity and collaborative networks, prevailing over institutionally limited economic resources and minimizing inequalities related to the length of individual's academic career, field of investigation, and gender.

3.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014111

RESUMO

The fungus Cryptococcus neoformans causes lethal meningitis in humans with weakened immune systems and is estimated to account for 10-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this environmental fungus evades the immune system and invades the mammalian brain before the onset of overt symptoms. To investigate the dynamics of C. neoformans tissue invasion, we mapped early fungal localisation and host cell interactions at early times in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. Made possible by these techniques, we confirm high fungal burden in mouse upper airway turbinates after nasal inoculation. Surprisingly, most yeasts in turbinates were titan cells, indicating this microenvironment enables titan cell formation with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, via imaging C. neoformans within blood vessels of mouse lungs and finding viable fungi in the bloodstream of mice a few days after intranasal infection, suggesting that bloodstream access can occur via lung alveoli. In a model of systemic cryptococcosis, we show that as early as 24 h post infection, majority of C. neoformans cells traversed the blood-brain barrier, and are engulfed or in close proximity to microglia. Our work establishes that C. neoformans can breach multiple tissue barriers within the first days of infection. This work presents a new method for investigating cryptococcal invasion mechanisms and demonstrates microglia as the primary cells responding to C. neoformans invasion.

4.
Sci Rep ; 13(1): 10154, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349387

RESUMO

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti, is lacking. In the current study, we utilized solid-state nuclear magnetic resonance spectroscopy, gas chromatography/mass spectrometry, and transmission electron microscopy to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti. No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.


Assuntos
Aedes , Inseticidas , Piretrinas , Febre Amarela , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Mosquitos Vetores
5.
Cell Host Microbe ; 31(3): 324-327, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893729

RESUMO

In this issue of Cell Host & Microbe, Jia and colleagues discover how the human p11 (s100A10)-Anxa2 heterodimer drives sorting of microbial phagosomes into recycling versus degradative pathways. In a remarkable evolutionary arms race, the Aspergillus fumigatus protein HscA latches to p11 to steer its phagosome away from fungal killing.


Assuntos
Fagossomos , Humanos , Aspergillus fumigatus , Fagossomos/metabolismo , Transporte Proteico , Proteínas Fúngicas/metabolismo
6.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36712033

RESUMO

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti , is lacking. In the current study, we utilized solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy, gas chromatography/mass spectrometry (GC-MS), and transmission electron microscopy (TEM) to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti . No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.

7.
PLoS Biol ; 19(5): e3001182, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979323

RESUMO

Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin's broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate-the most widely used herbicide globally-inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate's mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance. Overall, these findings suggest that glyphosate's environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.


Assuntos
Anopheles/efeitos dos fármacos , Glicina/análogos & derivados , Melaninas/metabolismo , Mariposas/efeitos dos fármacos , Animais , Anopheles/imunologia , Cryptococcus neoformans/patogenicidade , Dípteros/efeitos dos fármacos , Dípteros/imunologia , Glicina/metabolismo , Glicina/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Infecções/imunologia , Infecções/metabolismo , Infecções/fisiopatologia , Insetos/efeitos dos fármacos , Insetos/imunologia , Lepidópteros/efeitos dos fármacos , Lepidópteros/imunologia , Mariposas/imunologia , Plasmodium falciparum/patogenicidade , Virulência , Glifosato
8.
Front Genet ; 12: 648524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012462

RESUMO

Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all kingdoms of life. The diverse biogenesis pathways of EVs result in a wide variety of physical properties and functions across different organisms. Fungal EVs were first described in 2007 and different omics approaches have been fundamental to understand their composition, biogenesis, and function. In this review, we discuss the role of omics in elucidating fungal EVs biology. Transcriptomics, proteomics, metabolomics, and lipidomics have each enabled the molecular characterization of fungal EVs, providing evidence that these structures serve a wide array of functions, ranging from key carriers of cell wall biosynthetic machinery to virulence factors. Omics in combination with genetic approaches have been instrumental in determining both biogenesis and cargo loading into EVs. We also discuss how omics technologies are being employed to elucidate the role of EVs in antifungal resistance, disease biomarkers, and their potential use as vaccines. Finally, we review recent advances in analytical technology and multi-omic integration tools, which will help to address key knowledge gaps in EVs biology and translate basic research information into urgently needed clinical applications such as diagnostics, and immuno- and chemotherapies to fungal infections.

9.
Braz J Microbiol ; 52(1): 63-71, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32696418

RESUMO

The geographical distribution and ecological niche of the two circulating species of the Sporothrix genus in Venezuela was established. For this, 68 isolates of Sporothrix spp. from patients of different regions of the country were analyzed. A molecular taxonomy analysis was conducted using a fragment of the calmodulin gene (CAL), and ITS regions, confirming the presence of S. schenckii (62%) and S. globosa (38%). Computational models of ecological niche for each species were obtained by the maximum entropy method using the MaxEnt software, which predicted the best environmental conditions for the presence of the two species. These models predict that the main variables influencing the presence of S. schenckii were altitude and annual mean temperature, while for S. globosa, the more influent variable was the land use, with 82% of S. globosa located at urban areas vs 56% for S. schenckii. The results here presented could contribute to understand the specific environmental factors that might modulate the occurrence of Sporothrix spp. as well as its transmission. To our knowledge, our analyses show for the first time Sporothrix spp.-specific ecological niche data, a valuable tool to promote evidence-based public health policymaking within endemic areas of sporotrichosis.


Assuntos
Sporothrix/isolamento & purificação , Esporotricose/microbiologia , Ecossistema , Humanos , Modelos Biológicos , Filogenia , Sporothrix/classificação , Sporothrix/genética , Esporotricose/epidemiologia , População Urbana/estatística & dados numéricos , Venezuela/epidemiologia
10.
J Fungi (Basel) ; 6(4)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271921

RESUMO

The fungal cell wall serves as the interface between the cell and the environment. Fungal cell walls are composed largely of polysaccharides, primarily glucans and chitin, though in many fungi stress-resistant cell types elaborate additional cell wall structures. Here, we use solid-state nuclear magnetic resonance spectroscopy to compare the architecture of cell wall fractions isolated from Saccharomyces cerevisiae spores and Cryptococcus neoformans melanized cells. The specialized cell walls of these two divergent fungi are highly similar in composition. Both use chitosan, the deacetylated derivative of chitin, as a scaffold on which a polyaromatic polymer, dityrosine and melanin, respectively, is assembled. Additionally, we demonstrate that a previously identified but uncharacterized component of the S. cerevisiae spore wall is composed of triglycerides, which are also present in the C. neoformans melanized cell wall. Moreover, we identify a tyrosine-derived constituent in the C. neoformans wall that, although it is not dityrosine, is a non-pigment constituent of the cell wall. The similar composition of the walls of these two phylogenetically distant species suggests that triglycerides, polyaromatics, and chitosan are basic building blocks used to assemble highly stress-resistant cell walls and the use of these constituents may be broadly conserved in other fungal species.

11.
J Biol Chem ; 295(44): 15083-15096, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32859751

RESUMO

A primary virulence-associated trait of the opportunistic fungal pathogen Cryptococcus neoformans is the production of melanin pigments that are deposited into the cell wall and interfere with the host immune response. Previously, our solid-state NMR studies of isolated melanized cell walls (melanin "ghosts") revealed that the pigments are strongly associated with lipids, but their identities, origins, and potential roles were undetermined. Herein, we exploited spectral editing techniques to identify and quantify the lipid molecules associated with pigments in melanin ghosts. The lipid profiles were remarkably similar in whole C. neoformans cells, grown under either melanizing or nonmelanizing conditions; triglycerides (TGs), sterol esters (SEs), and polyisoprenoids (PPs) were the major constituents. Although no quantitative differences were found between melanized and nonmelanized cells, melanin ghosts were relatively enriched in SEs and PPs. In contrast to lipid structures reported during early stages of fungal growth in nutrient-rich media, variants found herein could be linked to nutrient stress, cell aging, and subsequent production of substances that promote chronic fungal infections. The fact that TGs and SEs are the typical cargo of lipid droplets suggests that these organelles could be connected to C. neoformans melanin synthesis. Moreover, the discovery of PPs is intriguing because dolichol is a well-established constituent of human neuromelanin. The presence of these lipid species even in nonmelanized cells suggests that they could be produced constitutively under stress conditions in anticipation of melanin synthesis. These findings demonstrate that C. neoformans lipids are more varied compositionally and functionally than previously recognized.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Parede Celular/metabolismo , Cryptococcus neoformans/metabolismo , Lipídeos/classificação , Melaninas/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Cryptococcus neoformans/patogenicidade , Lipídeos/análise , Virulência
12.
Infect Immun ; 88(7)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284371

RESUMO

The endosomal sorting complex required for transport (ESCRT) plays a crucial role in the transportation and degradation of proteins. We determined that Vps27, a key protein of the ESCRT-0 complex, is required for the transport of the virulence factor laccase to the cell wall in Cryptococcus neoformans Laccase activity was perturbed, as was melanin production, in vps27Δ strains. In the absence of VPS27, there was an accumulation of multivesicular bodies with vacuolar fragmentation and mistargeting of the vacuolar carboxypeptidase CPY/Prc1, resulting in an extracellular localization. In addition, deletion of VPS27 resulted in a defect in laccase targeting of a Lac1-green fluorescent protein (GFP) fusion to the cell wall with trapping within intracellular puncta; this deletion was accompanied by reduced virulence in a mouse model. However, the actin cytoskeleton remained intact, suggesting that the trafficking defect is not due to defects in actin-related localization. Extracellular vesicle maturation was also defective in the vps27Δ mutant, which had a larger vesicle size as measured by dynamic light scattering. Our data identify cryptococcal VPS27 as a required gene for laccase trafficking and attenuates virulence of C. neoformans in a mouse intravenous (i.v.) meningitis model.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lacase/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Transporte Biológico , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Meningite Criptocócica/microbiologia , Camundongos , Mutação , Transporte Proteico , Tolerância ao Sal , Vacúolos/metabolismo , Virulência , Fatores de Virulência/genética
13.
mBio ; 11(1)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019794

RESUMO

The fungal human pathogen Cryptococcus neoformans undergoes melanization in response to nutrient starvation and exposure to exogenous melanin precursors. Melanization protects the fungus against host defense mechanisms such as oxidative damage and other environmental stressors (e.g., heat/cold stress, antimicrobial compounds, ionizing radiation). Conversely, the melanization process generates cytotoxic intermediates, and melanized cells are potentially susceptible to overheating and to certain melanin-binding drugs. Despite the importance of melanin in C. neoformans biology, the signaling mechanisms regulating its synthesis are poorly understood. The recent report by D. Lee, E.-H. Jang, M. Lee, S.-W. Kim, et al. [mBio 10(5):e02267-19, 2019, https://doi.org/10.1128/mBio.02267-19] provides new insights into how C. neoformans regulates melanization. The authors identified a core melanin regulatory network consisting of transcription factors and kinases required for melanization under low-nutrient conditions. The redundant and epistatic connections of this melanin-regulating network demonstrate that C. neoformans melanization is complex and carefully regulated at multiple levels. Such complex regulation reflects the multiple functions of melanin in C. neoformans biology.


Assuntos
Anti-Infecciosos , Criptococose , Cryptococcus neoformans , Humanos , Melaninas , Transdução de Sinais , Fatores de Transcrição
14.
J Biol Chem ; 295(7): 1815-1828, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31896575

RESUMO

Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and "leaky melanin" mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.


Assuntos
Parede Celular/genética , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/genética , Pigmentação/genética , Parede Celular/química , Quitina/química , Quitina/metabolismo , Quitosana/química , Quitosana/metabolismo , Criptococose/genética , Criptococose/microbiologia , Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidade , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Humanos , Espectroscopia de Ressonância Magnética , Melaninas/química , Melaninas/metabolismo , Mutação/genética
15.
mSphere ; 4(4)2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391283

RESUMO

Cryptococcus neoformans is an important fungal pathogen, causing life-threatening pneumonia and meningoencephalitis. Brain dissemination of C. neoformans is thought to be a consequence of an active infection in the lung which then extravasates to other sites. Brain invasion results from dissemination via either transport by free yeast cells in the bloodstream or Trojan horse transport within mononuclear phagocytes. We assessed brain dissemination in three mouse models of infection: intravenous, intratracheal, and intranasal models. All three modes of infection resulted in dissemination of C. neoformans to the brain in less than 3 h. Further, C. neoformans was detected in the entirety of the upper respiratory tract and the ear canals of mice. In recent years, intranasal infection has become a popular mechanism to induce pulmonary infection because it avoids surgery, but our findings show that instillation of C. neoformans produces cryptococcal nasal infection. These findings imply that immunological studies using intranasal infection should assume that the initial sites of infection of infection are brain, lung, and upper respiratory tract, including the nasal airways.IMPORTANCECryptococcus neoformans causes an estimated 181, 000 deaths each year, mostly associated with untreated HIV/AIDS. C. neoformans has a ubiquitous worldwide distribution. Humans become infected from exposure to environmental sources, after which the fungus lays dormant within the human body. Upon AIDS-induced immunosuppression or therapy-induced immunosuppression (required for organ transplant recipients or those suffering from autoimmune disorders), cryptococcal disease reactivates and causes life-threatening meningitis and pneumonia. This study showed that upon contact with the host, C. neoformans can quickly (a few hours) reach the host brain and also colonizes the nose of infected animals. Therefore, this work paves the way to better knowledge of how C. neoformans travels through the host body. Understanding how C. neoformans infects, disseminates, and survives within the host is critically required so that we can prevent infections and the disease caused by this deadly fungus.


Assuntos
Administração Intranasal , Encéfalo/microbiologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Nariz/microbiologia , Administração Intravenosa , Animais , Modelos Animais de Doenças , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Traqueia/microbiologia
16.
J Biol Chem ; 294(27): 10471-10489, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118223

RESUMO

Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.


Assuntos
Parede Celular/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/química , Cryptococcus neoformans/classificação , Levodopa/química , Espectroscopia de Ressonância Magnética , Melaninas/análise , Melaninas/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Tamanho da Partícula , Filogenia , Proteômica
17.
Microbiology (Reading) ; 165(8): 852-862, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31140968

RESUMO

Annexins are multifunctional proteins that bind to phospholipid membranes in a calcium-dependent manner. Annexins play a myriad of critical and well-characterized roles in mammals, ranging from membrane repair to vesicular secretion. The role of annexins in the kingdoms of bacteria, protozoa and fungi have been largely overlooked. The fact that there is no known homologue of annexins in the yeast model organism Saccharomyces cerevisiae may contribute to this gap in knowledge. However, annexins are found in most medically important fungal pathogens, with the notable exception of Candida albicans. In this study we evaluated the function of the one annexin gene in Cryptococcus neoformans, a causative agent of cryptococcosis. This gene CNAG_02415, is annotated in the C. neoformans genome as a target of calcineurin through its transcription factor Crz1, and we propose to update its name to cryptococcal annexin, AnnexinC1. C. neoformans strains deleted for AnnexinC1 revealed no difference in survival after exposure to various chemical stressors relative to wild-type strain, as well as no major alteration in virulence or mating. The only alteration observed in strains deleted for AnnexinC1 was a small increase in the titan cells' formation in vitro. The preservation of annexins in many different fungal species suggests an important function, and therefore the lack of a strong phenotype for annexin-deficient C. neoformans indicates either the presence of redundant genes that can compensate for the absence of AnnexinC1 function or novel functions not revealed by standard assays of cell function and pathogenicity.


Assuntos
Anexinas/genética , Cryptococcus neoformans , Animais , Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas , Genes Fúngicos , Camundongos , Fenótipo , Filogenia , Virulência
18.
J Fungi (Basel) ; 4(3)2018 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-30060601

RESUMO

Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.

19.
Microbiology (Reading) ; 164(8): 1012-1022, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29939127

RESUMO

Melanization is an intrinsic characteristic of many fungal species, but details of this process are poorly understood because melanins are notoriously difficult pigments to study. While studying the binding of cell-wall dyes, Eosin Y or Uvitex, to melanized and non-melanized Cryptococcus neoformans cells we noted that melanization leads to reduced fluorescence intensity, suggesting that melanin interfered with dye binding to the cell wall. The growth of C. neoformans in melanizing conditions with either of the cell-wall dyes resulted in an increase in supernatant-associated melanin, consistent with blockage of melanin attachment to the cell wall. This effect provided the opportunity to characterize melanin released into culture supernatants. Released melanin particles appeared mostly as networked structures having dimensions consistent with previously described extracellular vesicles. Hence, dye binding to the cell wall created conditions that resembled the 'leaky melanin' phenotype described for certain cell-wall mutants. In agreement with earlier studies on fungal melanins biosynthesis, our observations are supportive of a model whereby C. neoformans melanization proceeds by the attachment of melanin nanoparticles to the cell wall through chitin, chitosan, and various glucans.


Assuntos
Parede Celular/metabolismo , Criptococose/patologia , Cryptococcus neoformans/metabolismo , Corantes Fluorescentes/química , Melaninas/metabolismo , Quitina/metabolismo , Quitosana/metabolismo , Glucanos/metabolismo , Coloração e Rotulagem
20.
PLoS Pathog ; 14(6): e1007144, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29906292

RESUMO

Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.


Assuntos
Encéfalo/patologia , Criptococose/patologia , Cryptococcus neoformans/enzimologia , Macrófagos/patologia , Fagossomos/patologia , Urease/metabolismo , Virulência , Animais , Encéfalo/enzimologia , Encéfalo/microbiologia , Células Cultivadas , Criptococose/microbiologia , Feminino , Concentração de Íons de Hidrogênio , Macrófagos/enzimologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/enzimologia , Urease/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...