Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14224, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987984

RESUMO

Sodium appetite is a motivational state involving homeostatic behavior, seeking the ingest of salty substances after sodium loss. There is a temporal dissociation between sodium depletion (SD) and the appearance of sodium appetite. However, the responsible mechanisms for this delay remain poorly elucidated. In the present study, we measured the temporal changes at two and 24 h after SD in the gene expression of key elements within excitatory, inhibitory, and sensory areas implicated in the signaling pathways involved in the onset of sodium appetite. In SD rats, we observed that the expression of critical components within the brain control circuit of sodium appetite, including Angiotensin-type-1 receptor (Agtr1a), Oxytocin-(OXT-NP)-neurophysin-I, and serotonergic-(5HT)-type-2c receptor (Htr2c) were modulated by SD, regardless of time. However, we observed reduced phosphorylation of mitogen-activated protein kinases (MAPK) at the paraventricular nucleus (PVN) and increased oxytocin receptor (Oxtr) mRNA expression at the anteroventral of the third ventricle area (AV3V), at two hours after SD, when sodium appetite is inapparent. At twenty-four hours after SD, when sodium appetite is released, we observed a reduction in the mRNA expression of the transient receptor potential channel 1gene (Trpv1) and Oxtr in the AV3V and the dorsal raphe nucleus, respectively. The results indicate that SD exerts a coordinated timing effect, promoting the appearance of sodium appetite through changes in MAPK activity and lower Trpv1 channel and Oxtr expression that trigger sodium consumption to reestablish the hydroelectrolytic homeostasis.


Assuntos
Apetite , Sódio na Dieta , Animais , Apetite/fisiologia , Biomarcadores , Ocitocina , RNA Mensageiro/farmacologia , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Sódio/metabolismo , Sódio na Dieta/metabolismo
2.
Mol Cell Endocrinol ; 447: 98-105, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254489

RESUMO

This study aimed to define whether sex chromosome complement (SCC) may differentially modulate sex differences in relative gene expression of basal Agtr1a, Agtr2, and Mas1 receptors at fore/hindbrain nuclei and at medulla/cortical kidney. Samples were collected from gonadectomized male (XX and XY) and female (XX and XY) mice of the "four core genotypes" model. At brain level, a SCC effect at the area postrema was demonstrated. An increase in mRNA level of Agtr1a and Agtr1a/Agtr2 ratio in XY-SCC mice was associated with a decrease in Mas1 compared to XX-SCC mice. In the renal cortex, a SCC effect for Agtr2 and Mas1 was observed. Regardless of sex (male or female), XX-SCC mice expressed higher levels of mRNA Agtr2 and Mas1 than XY-SCC mice {F(1,12) = 6,126,p < 0.05; F(1,21) = 5,143,p < 0.05}. Furthermore, XX-female mice showed a significant increase in Mas1 expression compared to XY-female mice. These results reveal a SCC modulatory effect at central and kidney level on angiotensin receptor expression, with an enhancement of the vasodilatory arm in XX-mice and an increase in the vasoconstriction arm in XY-mice, which may underlie sex differences in the regulation of arterial pressure.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuais , Cromossomos Sexuais/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica , Genótipo , Rim/metabolismo , Masculino , Camundongos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/genética , Receptores Acoplados a Proteínas G/genética
3.
Eur J Neurosci ; 45(4): 521-527, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27888546

RESUMO

GABAA receptor activation exerts trophic actions in immature neurons through depolarization of resting membrane potential. The switch to its classical hyperpolarizing role is developmentally regulated. Previous results suggest that a hormonally biased sex difference exists at the onset of the switch in hypothalamic neurons. The aim of this work was to evaluate sex differences in GABAA receptor function of hypothalamic neurons before brain masculinization by gonadal hormones. Hypothalamic cells were obtained from embryonic day 16 male and female rat foetuses, 2 days before the peak of testosterone production by the foetal testis, and grown in vitro for 9 days. Whole-cell and perforated patch-clamp recordings were carried out in order to measure several electrophysiological parameters. Our results show that there are more male than female neurons responding with depolarization to muscimol. Additionally, among cells with depolarizing responses, males have higher and longer lasting responses than females. These results highlight the relevance of differences in neural cell sex irrespective of exposure to sex hormones.


Assuntos
Potenciais de Ação , Células-Tronco Embrionárias/fisiologia , Hipotálamo/citologia , Células-Tronco Neurais/fisiologia , Receptores de GABA-A/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Hipotálamo/embriologia , Masculino , Muscimol/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Ratos , Ratos Wistar , Fatores Sexuais , Testosterona/metabolismo
4.
Mol Cell Endocrinol ; 414: 99-110, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26231585

RESUMO

Aromatase, which converts testosterone in estradiol, is involved in the generation of brain sex dimorphisms. Here we used the "four core genotypes" mouse model, in which the effect of gonadal sex and sex chromosome complement is dissociated, to determine if sex chromosomes influence the expression of brain aromatase. The brain of 16 days old XY mouse embryos showed higher aromatase expression in the stria terminalis and the anterior amygdaloid area than the brain of XX embryos, independent of gonadal sex. Furthermore, estradiol or dihydrotestosterone increased aromatase expression in cultures of anterior amygdala neurons derived from XX embryos, but not in those derived from XY embryos. This effect was also independent of gonadal sex. The expression of other steroidogenic molecules, estrogen receptor-α and androgen receptor was not influenced by sex chromosomes. In conclusion, sex chromosomes determine sex dimorphisms in aromatase expression and regulation in the developing mouse brain.


Assuntos
Aromatase/metabolismo , Complexo Nuclear Corticomedial/embriologia , Gônadas/enzimologia , Núcleos Septais/embriologia , Cromossomos Sexuais/metabolismo , Animais , Aromatase/genética , Células Cultivadas , Complexo Nuclear Corticomedial/citologia , Complexo Nuclear Corticomedial/enzimologia , Di-Hidrotestosterona/farmacologia , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Núcleos Septais/citologia , Núcleos Septais/enzimologia , Fatores Sexuais
5.
Front Cell Neurosci ; 8: 188, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071448

RESUMO

The organizational action of testosterone during critical periods of development is the cause of numerous sex differences in the brain. However, sex differences in neuritogenesis have been detected in primary neuronal hypothalamic cultures prepared before the peak of testosterone production by fetal testis. In the present study we assessed the hypothesis of that cell-autonomous action of sex chromosomes can differentially regulate the expression of the neuritogenic gene neurogenin 3 (Ngn3) in male and female hypothalamic neurons, generating sex differences in neuronal development. Neuronal cultures were prepared from male and female E14 mouse hypothalami, before the fetal peak of testosterone. Female neurons showed enhanced neuritogenesis and higher expression of Ngn3 than male neurons. The silencing of Ngn3 abolished sex differences in neuritogenesis, decreasing the differentiation of female neurons. The sex difference in Ngn3 expression was determined by sex chromosomes, as demonstrated using the four core genotypes mouse model, in which a spontaneous deletion of the testis-determining gene Sry from the Y chromosome was combined with the insertion of the Sry gene onto an autosome. In addition, the expression of Ngn3, which is also known to mediate the neuritogenic actions of estradiol, was increased in the cultures treated with the hormone, but only in those from male embryos. Furthermore, the hormone reversed the sex differences in neuritogenesis promoting the differentiation of male neurons. These findings indicate that Ngn3 mediates both cell-autonomous actions of sex chromosomes and hormonal effects on neuritogenesis.

6.
Mol Cell Endocrinol ; 390(1-2): 102-11, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24755422

RESUMO

Transgenic female mice overexpressing the α- and ß- subunits of human chorionic gonadotropin (hCGαß+) exhibited precocious puberty, as evidenced by early vaginal opening. Chronically elevated hCG in 21-day-old hCGαß+ females stimulated gonadal androgen production, which exerted negative feedback over the endogenous gonadotropin synthesis, and activated the hypothalamic GnRH pulsatility and gene expression. Transgenic females also exhibited elevated hypothalamic aromatization in the preoptic area (POA), which is the sexually-differentiated area that controls the LH surge in adulthood. Ovariectomy at 14 days of age was unable to rescue this phenotype. However, the blockade of androgen action by flutamide from postnatal day 6 onwards reduced the aromatase levels in the POA of hCGαß+ females. Our results suggest that early exposure of females to androgen action during a critical period between postnatal days 6-14 induces sex-specific organizational changes of the brain, which affect the aromatase expression in the POA at the onset of precocious puberty.


Assuntos
Gonadotropina Coriônica/metabolismo , Hipotálamo/metabolismo , Puberdade Precoce/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Animais , Aromatase/metabolismo , Células Cultivadas , Gonadotropina Coriônica/fisiologia , Estradiol/sangue , Feminino , Flutamida/farmacologia , Flutamida/uso terapêutico , Hormônio Foliculoestimulante/sangue , Expressão Gênica , Hormônio Liberador de Gonadotropina/fisiologia , Humanos , Camundongos Transgênicos , Hipófise/metabolismo , Puberdade Precoce/tratamento farmacológico , Testosterona/sangue , Vagina/fisiopatologia
7.
Am J Physiol Regul Integr Comp Physiol ; 306(3): R175-84, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24259464

RESUMO

Previous studies indicate a sex chromosome complement (SCC) effect on the angiotensin II-sexually dimorphic hypertensive and bradycardic baroreflex responses. We sought to evaluate whether SCC may differentially modulate sexually dimorphic-induced sodium appetite and specific brain activity due to physiological stimulation of the rennin angiotensin system. For this purpose, we used the "four core genotype" mouse model, in which the effect of gonadal sex and SCC is dissociated, allowing comparisons of sexually dimorphic traits between XX and XY females as well as in XX and XY males. Gonadectomized mice were sodium depleted by furosemide (50 mg/kg) and low-sodium diet treatment; control groups were administered with vehicle and maintained on normal sodium diet. Twenty-one hours later, the mice were divided into two groups: one group was submitted to the water-2% NaCl choice intake test, while the other group was perfused and their brains subjected to the Fos-immunoreactivity (FOS-ir) procedure. Sodium depletion, regardless of SCC (XX or XY), induced a significantly lower sodium and water intake in females than in males, confirming the existence in mice of sexual dimorphism in sodium appetite and the organizational involvement of gonadal steroids. Moreover, our results demonstrate a SCC effect on induced brain FOS-ir, showing increased brain activity in XX-SCC mice at the paraventricular nucleus, nucleus of the solitary tract, and lateral parabrachial nucleus, as well as an XX-SCC augmented effect on sodium depletion-induced brain activity at two circumventricular organs, the subfornical organ and area postrema, nuclei closely involved in fluid and blood pressure homeostasis.


Assuntos
Apetite/efeitos dos fármacos , Encéfalo/metabolismo , Dieta Hipossódica , Furosemida/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Cromossomos Sexuais/metabolismo , Sódio na Dieta/metabolismo , Animais , Apetite/fisiologia , Encéfalo/patologia , Dieta Hipossódica/métodos , Ingestão de Líquidos/efeitos dos fármacos , Feminino , Masculino , Camundongos
8.
Mol Cell Endocrinol ; 355(1): 169-79, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22366173

RESUMO

In the present work we aimed at identifying ERα in the plasma membrane of normal anterior pituitary cells and investigated if 17ß-estradiol was able to induce their subcellular redistribution. Our results show that about 8% of anterior pituitary cells expressed ERα in the plasma membrane, with the geometrical mean fluorescence intensity being increased after steroid hormone treatment. 17ß-Estradiol and the selective ERα agonist PPT induced an increase of ERα expression in the plasma membrane and activated the PKCα/ERK 1/2 pathway in a time-course not compatible with genomic actions, thus supporting the notion of membrane-initiated effects. These findings suggest that 17ß-estradiol stimulates the translocation of endogenous ERα to the plasma membrane, consequently modulating this ER pool and leading to cellular biological effects in normal anterior pituitary gland.


Assuntos
Membrana Celular/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Adeno-Hipófise/efeitos dos fármacos , Animais , Membrana Celular/metabolismo , Células Cultivadas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Ligantes , Fenóis , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transporte Proteico/efeitos dos fármacos , Pirazóis/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
9.
Hypertension ; 58(3): 505-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21810650

RESUMO

To investigate whether sex chromosome complement modulates bradycardic baroreflex response and contributes to the angiotensin II-bradycardic baroreflex sex differences, we used the four core genotype mouse model in which the effect of gonadal sex and sex chromosome complement is dissociated, allowing comparisons of sexually dimorphic traits among XX and XY females, as well as in XX and XY males. In conscious gonadectomized (GDX) MF1 transgenic mice we evaluated baroreflex regulation of heart rate in response to changes in blood pressure evoked by phenylephrine (1 mg/mL), angiotensin II (100 µg/mL), and sodium nitroprusside (1 mg/mL). The administration of phenylephrine in GDX-XY females resulted in a significantly lower baroreflex response when compared with the other genotypes (in beats · min(-1) · mm Hg(-1) [slopes of regression lines for GDX-XY females -3.56±0.37 versus -6.06±0.38, -6.37±0.54 and -6.70±0.34 for GDX-XY male, GDX-XX female, and GDX-XX male mice, respectively]) {F(1,19)=9.63; P<0.01}. In addition, in both GDX-XY males and females, the angiotensin II-bradycardic baroreflex response was attenuated when compared with heart rate changes in GDX-XX male and female mice (in beats · min(-1) · mm Hg(-1) [slopes of regression lines: -2.83±0.28 versus -5.76±0.26 in GDX-XY and GDX-XX mice, respectively]) {F(1,19)=13.91; P<0.005}. In contrast, reflex tachycardic responses to sodium nitroprusside were comparable in all of the genotypes. These data support the hypothesis that sex chromosome complement modulates reflex inhibition of heart rate to phenylephrine and angiotensin II. Elucidating the foundational sources of sexually dimorphic traits in the regulation of baroreceptor reflex may enable the design of more appropriate sex-tailored therapeutic treatments in the future.


Assuntos
Barorreflexo/efeitos dos fármacos , Bradicardia/fisiopatologia , Aberrações dos Cromossomos Sexuais , Cromossomo X/genética , Cromossomo Y/genética , Angiotensina II/farmacologia , Animais , Barorreflexo/genética , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Bradicardia/genética , Castração , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Fatores Sexuais , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
10.
Cell Mol Neurobiol ; 22(5-6): 479-500, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12585676

RESUMO

Based on evidence obtained during the past 50 years, the current hypothesis to explain the sexual dimorphism of structure and function in the brain of vertebrates maintains that these differences are produced by the epigenetic action of gonadal hormones. However, evidence has progressively accumulated suggesting that genetic mechanisms controlling sexual-specific neuronal characteristics precede, or occur in parallel with, hormonal effects. 1. In cultures of hypothalamic neurons taken from gestation day 16 (GD16) embryos, treatment of sexually segregated cultures with estradiol (E2) induces axon growth in neurons from male neurons, but not from female neurons. In these cultures treatment with E2 increased the levels of tyrosine kinase type B (TrkB) and insulin-like growth factor I (IGF-I) receptors in male but not in female neurons. This and other sex differences cannot be explained by differences in hormonal environment, because the donor embryos were obtained when gonadal secretion of steroids is just beginning, before the perinatal surge of testosterone that determines development of the male brain beginning at GD17/18. 2. The response to estrogen is contingent upon coculture with heterotopic glia (mostly astrocytes) from a target region (amygdala) harvested from same-sex fetuses at GD16, whereas in the presence of homotopic glia or in cultures without glia, E2 had no effect. It was concluded that the axogenic effect of E2 depends on interaction between neurons and glia from a target region and that neurons from fetal male donors appear to mature earlier than neurons from females, a differentiated response that takes place prior to divergent exposure to gonadal secretions. 3. The effects of target and nontarget glia-conditioned media (CM) on the E2-induced growth of neuronal processes of hypothalamic neurons obtained from sexually segregated fetal donors were also studied. Estrogen added to media conditioned by target glia modified the number of primary neurites and the growth of axons of hypothalamic neurons of males but not of females. 4. Neither the Type III steroidal receptor blocker tamoxifen nor Type I antiestrogen ICI 182,780 prevented the axogenic effects of the hormone. Estradiol made membrane-impermeable by conjugation to a protein of high molecular weight (E2-BSA) preserved its axogenic capacity, suggesting the possibility of a membrane effect responsible for the action of E2. 5. Western blot analysis of the tyrosine kinase type A (TrkA), type B (TrkB), type C (TrkC), and insulin-like growth factor (IGF-I R) receptors in extracts from homogenates of cultured hypothalamic neurons showed that in cultures of male-derived neurons grown with E2 and CM from target glia, the amounts of TrkB and IGF-I R increased notably. Densitometric quantification showed that these cultures had more TrkB than cultures with CM alone or E2 alone. On the contrary, in cultures of female-derived neurons, the presence of CM alone induced maximal levels of TrkB, which were not further increased by E2; female-derived neurons in all conditions did not contain IGF-I R. Levels of TrkC were not modified by any experimental condition in male- or female-derived cultures and Trk A was not found in the homogenates. These results are compared with similar data from other laboratories and integrated in a model for the confluent interaction of estrogen and neurotrophic factors released by glia that may contribute to the sexual differentiation of the brain.


Assuntos
Encéfalo/embriologia , Estrogênios/metabolismo , Cones de Crescimento/metabolismo , Fatores de Crescimento Neural/metabolismo , Processos de Determinação Sexual , Diferenciação Sexual/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Comunicação Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Cones de Crescimento/efeitos dos fármacos , Humanos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Diferenciação Sexual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...