Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 121(5): 897-908, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29370337

RESUMO

Background and Aims: Ephemeral seagrasses that respond rapidly to environmental changes are important marine habitats. However, they are under threat due to human activity and are logistically difficult and expensive to study. This study aimed to develop a new functional-structural environmentally dependent model of ephemeral seagrass, able to integrate our understanding of ephemeral seagrass growth dynamics and assess options for potential management interventions, such as seagrass transplantation. Methods: A functional-structural plant model was developed in which growth and senescence rates are mechanistically linked to environmental variables. The model was parameterized and validated for a population of Halophila stipulacea in the Persian Gulf. Key Results: There was a good match between empirical and simulated results for the number of apices, net rhizome length or net number of internodes using a 330 d simulation. Simulated data were more variable than empirical data. Simulated structural patterns of seagrass rhizome growth qualitatively matched empirical observations. Conclusions: This new model successfully simulates the environmentally dependent growth and senescence rates of our case-study ephemeral seagrass species. It produces numerical and visual outputs that help synthesize our understanding of how the influence of environmental variables on plant functional processes affects overall growth patterns. The model can also be used to assess the potential outcomes of management interventions like seagrass transplantation, thus providing a useful management tool. It is freely available and easily adapted for new species and locations, although validation with more species and environments is required.


Assuntos
Hydrocharitaceae/fisiologia , Modelos Biológicos , Biomassa , Ecossistema , Meio Ambiente , Hydrocharitaceae/anatomia & histologia , Hydrocharitaceae/crescimento & desenvolvimento , Oceano Índico , Biologia Marinha , Rizoma/anatomia & histologia , Rizoma/crescimento & desenvolvimento , Rizoma/fisiologia , Estações do Ano , Especificidade da Espécie
2.
Mar Pollut Bull ; 115(1-2): 252-260, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989371

RESUMO

Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψw) and osmotic potential (Ψπ) were more negative at increased salinity, while turgor pressure (Ψp) was unaffected. Leaf concentrations of K+ and Ca2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls.


Assuntos
Alismatales/fisiologia , Fotossíntese , Salinidade , Cloreto de Sódio , Água
3.
Plant Physiol ; 113(3): 961-965, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12223656

RESUMO

We investigated whether leaf dark respiration (nonphotorespiratory mitochondrial CO2 release) is inhibited by light in several Poa species, and whether differences in light inhibition between the species are related to differences in the rate of leaf net photosynthesis. Four lowland (Poa annua L., Poa compressa L., Poa pratensis L., and Poa trivialis L.), one subalpine (Poa alpina L.), and two alpine (Poa costiniana Vick. and Poa fawcettiae Vick.) Poa species differing in whole plant relative growth rates were grown under identical controlled conditions. Nonphotorespiratory mitochondrial CO2 release in the light (Rd) was estimated according to the Laisk method. Photosynthesis was measured at ambient CO2 partial pressure (35 Pa) and 500 [mu]mol photons m-2 s-1. The rate of photosynthesis per unit leaf mass was positively correlated with the relative growth rate, with the slow-growing alpine Poa species exhibiting the lowest photosynthetic rates. Rates of both Rd and respiration in darkness were also substantially lower in the alpine species. Nonphotorespiratory CO2 release in darkness was higher than Rd in all species. However, despite some variation between the species in the level of light inhibition of respiration, no relationship was observed between the level of inhibition and the rate of photosynthesis. Similarly, the level of inhibition was not correlated with the relative growth rate. Our results support the suggestion that rates of leaf respiration in the light are closely associated with rates in darkness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...