Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 18(1): 6, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658604

RESUMO

BACKGROUND: Río Celeste ("Sky-Blue River") is a river located in the Tenorio National Park (Costa Rica) that has become an important hotspot for eco-tourism due to its striking sky-blue color. A previous study indicated that this color is not caused by dissolved chemical species, but by formation of light-scattering aluminosilicate particles at the mixing point of two colorless streams, the acidic Quebrada Agria and the neutral Río Buenavista. RESULTS: We now present microbiological information on Río Celeste and its two tributaries, as well as a more detailed characterization of the particles that occur at the mixing point. Our results overturn the previous belief that the light scattering particles are formed by the aggregation of smaller particles coming from Río Buenavista, and rather point to chemical formation of hydroxyaluminosilicate colloids when Quebrada Agria is partially neutralized by Río Buenavista, which also contributes silica to the reaction. The process is mediated by the activities of different microorganisms in both streams. In Quebrada Agria, sulfur-oxidizing bacteria generate an acidic environment, which in turn cause dissolution and mobilization of aluminum and other metals. In Río Buenavista, the growth of diatoms transforms dissolved silicon into colloidal biogenic forms which may facilitate particle precipitation. CONCLUSIONS: We show how the sky-blue color of Río Celeste arises from the tight interaction between chemical and biological processes, in what constitutes a textbook example of emergent behavior in environmental microbiology.

2.
Extremophiles ; 21(2): 235-243, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27933457

RESUMO

Whether the extreme conditions of acidity and heavy metal pollution of streams and rivers originating in pyritic formations are caused primarily by mining activities or by natural activities of metal-oxidizing microbes living within the geological formations is a subject of considerable controversy. Most microbiological studies of such waters have so far focused on acid mine drainage sites, which are heavily human-impacted environments, so it has been problematic to eliminate the human factor in the question of the origin of the key metal compounds. We have studied the physico-chemistry and microbiology of the Río Sucio in the Braulio Carrillo National Park of Costa Rica, 22 km from its volcanic rock origin. Neither the remote origin, nor the length of the river to the sampling site, have experienced human activity and are thus pristine. The river water had a characteristic brownish-yellow color due to high iron-dominated minerals, was slightly acidic, and rich in chemolithoautotrophic iron- and sulfur-oxidizing bacteria, dominated by Gallionella spp. Río Sucio is thus a natural acid-rock drainage system whose metal-containing components are derived primarily from microbial activities.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Gallionellaceae/fisiologia , Rios/microbiologia , Microbiologia da Água , Costa Rica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...