Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474330

RESUMO

The term cholangiocarcinoma (CCA) defines a class of epithelial malignancies originating from bile ducts. Although it has been demonstrated that CCA patients with perineural invasion (PNI) have a worse prognosis, the biological features of this phenomenon are yet unclear. Our data show that in human intrahepatic CCA specimens with documented PNI, nerve-infiltrating CCA cells display positivity of the epithelial marker cytokeratin 7, lower with respect to the rest of the tumor mass. In an in vitro 3D model, CCA cells move towards a peripheral nerve explant allowing contact with Schwann cells (SCs) emerging from the nerve. Here, we show that SCs produce soluble factors that favor the migration, invasion, survival and proliferation of CCA cells in vitro. This effect is accompanied by a cadherin switch, suggestive of an epithelial-mesenchymal transition. The influence of SCs in promoting the ability of CCA cells to migrate and invade the extracellular matrix is hampered by a specific TGFß receptor 1 (TGFBR1) antagonist. Differential proteomic data indicate that the exposure of CCA cells to SC secreted factors induces the upregulation of key oncogenes and the concomitant downregulation of some tumor suppressors. Taken together, these data concur in identifying SCs as possible promoters of a more aggressive CCA phenotype, ascribing a central role to TGFß signaling in regulating this process.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Fenótipo , Proteômica , Células de Schwann/patologia , Fator de Crescimento Transformador beta/genética , Invasividade Neoplásica
2.
Sci Total Environ ; 912: 168925, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040379

RESUMO

Parabens are preservatives found in cosmetics, processed foods, and medications. The harmful repercussions on the central nervous system by one of the most common parabens, propylparaben (PrP), are yet unknown, especially during development. In this study, the neurodevelopmental effects of PrP and long-term neurotoxicity were investigated in the zebrafish model, using an integrated approach. Zebrafish embryos were exposed to two different concentrations of PrP (10 and 1000 µg/L), then larvae were examined for their behavioral phenotypes (open-field behavior, startle response, and circadian rhythmicity) and relevant brain markers (cyp19a1b, pax6a, shank3a, and gad1b). Long-term behavioral and cognitive impacts on sociability, cerebral functional asymmetry and thigmotaxis were also examined on juveniles at 30 dpf and 60 dpf. Moreover, proteomics and gene expression analysis were assessed in brains of 60 dpf zebrafish. Interestingly, thigmotaxis was decreased by the high dose in larvae and increased by the low dose in juveniles. The expression of shank3a and gad1b genes was repressed by both PrP concentrations pointing to possible effects of PrP on neurodevelopment and synaptogenesis. Proteomics analysis evidenced alterations related to brain development and lipid metabolism. Overall, the results demonstrated that early-life exposure to PrP promotes developmental and persistent neurobehavioral alterations in the zebrafish model, affecting genes and protein levels possibly associated with brain diseases.


Assuntos
Parabenos , Peixe-Zebra , Animais , Parabenos/toxicidade , Parabenos/metabolismo , Larva , Conservantes Farmacêuticos
3.
PLoS Pathog ; 19(3): e1011174, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877739

RESUMO

Actins are filament-forming, highly-conserved proteins in eukaryotes. They are involved in essential processes in the cytoplasm and also have nuclear functions. Malaria parasites (Plasmodium spp.) have two actin isoforms that differ from each other and from canonical actins in structure and filament-forming properties. Actin I has an essential role in motility and is fairly well characterized. The structure and function of actin II are not as well understood, but mutational analyses have revealed two essential functions in male gametogenesis and in the oocyst. Here, we present expression analysis, high-resolution filament structures, and biochemical characterization of Plasmodium actin II. We confirm expression in male gametocytes and zygotes and show that actin II is associated with the nucleus in both stages in filament-like structures. Unlike actin I, actin II readily forms long filaments in vitro, and near-atomic structures in the presence or absence of jasplakinolide reveal very similar structures. Small but significant differences compared to other actins in the openness and twist, the active site, the D-loop, and the plug region contribute to filament stability. The function of actin II was investigated through mutational analysis, suggesting that long and stable filaments are necessary for male gametogenesis, while a second function in the oocyst stage also requires fine-tuned regulation by methylation of histidine 73. Actin II polymerizes via the classical nucleation-elongation mechanism and has a critical concentration of ~0.1 µM at the steady-state, like actin I and canonical actins. Similarly to actin I, dimers are a stable form of actin II at equilibrium.


Assuntos
Culicidae , Parasitos , Plasmodium , Animais , Masculino , Actinas/metabolismo , Parasitos/metabolismo , Citoesqueleto de Actina/metabolismo , Culicidae/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium/metabolismo
4.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078064

RESUMO

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.


Assuntos
Edema Encefálico , Cistos , Astrócitos/metabolismo , Edema Encefálico/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cloretos/metabolismo , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/metabolismo , Proteômica , Canais de Ânion Dependentes de Voltagem/metabolismo , Água/metabolismo
5.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215282

RESUMO

This work describes the activity of 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX) and of its newly identified carboxylic acid metabolite on the human malaria parasite Plasmodium falciparum. NBDHEX has been previously identified as a potent cytotoxic agent against murine and human cancer cells as well as towards the protozoan parasite Giardia duodenalis. We show here that NBDHEX is active in vitro against all blood stages of P. falciparum, with the rare feature of killing the parasite stages transmissible to mosquitoes, the gametocytes, with a 4-fold higher potency than that on the pathogenic asexual stages. This activity importantly translates into blocking parasite transmission through the Anopheles vector in mosquito experimental infections. A mass spectrometry analysis identified covalent NBDHEX modifications in specific cysteine residues of five gametocyte proteins, possibly associated with its antiparasitic effect. The carboxylic acid metabolite of NBDHEX retains the gametocyte preferential inhibitory activity of the parent compound, making this novel P. falciparum transmission-blocking chemotype at least as a new tool to uncover biological processes targetable by gametocyte selective drugs. Both NBDHEX and its carboxylic acid metabolite show very limited in vitro cytotoxicity on VERO cells. This result and previous evidence that NBDHEX shows an excellent in vivo safety profile in mice and is orally active against human cancer xenografts make these molecules potential starting points to develop new P. falciparum transmission-blocking agents, enriching the repertoire of drugs needed to eliminate malaria.

6.
Front Aging Neurosci ; 13: 741414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776928

RESUMO

The discovery of new biomarkers for Alzheimer's disease (AD) is essential for an accurate diagnosis, to conceive new strategies of treatments, and for monitoring the efficacy of potential disease-modifying therapies in clinical trials. proNGF levels in the cerebrospinal fluid (CSF) represent a promising diagnostic biomarker for AD, but its validation was hampered by the absence of a reliable immunoassay. In the literature, proNGF is currently measured in postmortem brain tissue by semiquantitative immunoblot. Here we describe the development and validation of a new method to measure proNGF in the CSF of living patients. This method, based on molecular size separation by capillary electrophoresis, is automated and shows a 40-fold increase in sensitivity with respect to the proNGF immunoblot, largely used in literature, and is robust, specific, and scalable to high-throughput. We have measured proNGF in the cerebrospinal fluid of 84 living patients with AD, 13 controls, and 15 subjective memory complaints (SMC) subjects. By comparing the proNGF levels in the three groups, we found a very significant difference between proNGF levels in AD samples compared with both controls and SMC subjects, while no significant difference was found between SMC and controls. Because of the development of this new immunoassay, we are ready to explore the potentiality of proNGF as a new biomarker for AD or subgroups thereof, as well as for other neurodegenerative diseases.

7.
Cancers (Basel) ; 13(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439311

RESUMO

The early detection of cutaneous melanoma, a potentially lethal cancer with rising incidence, is fundamental to increasing survival and therapeutic adjustment. In stages II-IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0-I, II and III-IV melanoma patients (n = 38) could reflect disease stage. The subpopulation of sEV expressing CD81 EV marker (CD81sEV) was captured by an ad hoc immune affinity technique from plasma depleted of large EV. Biological macromolecules were investigated by gas chromatography and mass spectrometry in CD81sEV. A higher content of FA was detectable in patients with respect to healthy donors (HD). Moreover, a higher C18:0/C18:1 ratio, as a marker of cell membrane fluidity, distinguished early (stage 0-I) from late (III-IV) stages' CD81sEV. Proteomics detected increases in CD14, PON1, PON3 and APOA5 exclusively in stage II CD81sEV, and RAP1B was decreased in stage III-IV CD81sEV, in comparison to HD. Our results suggest that stage dependent alterations in CD81sEV' FA and protein composition may occur early after disease onset, strengthening the potential of circulating sEV as a source of discriminatory information for early diagnosis, prediction of metastatic behavior and following up of melanoma patients.

8.
Biomedicines ; 9(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201207

RESUMO

Giardiasis, caused by the protozoan parasite Giardia duodenalis, is an intestinal diarrheal disease affecting almost one billion people worldwide. A small endosymbiotic dsRNA viruses, G. lamblia virus (GLV), genus Giardiavirus, family Totiviridae, might inhabit human and animal isolates of G. duodenalis. Three GLV genomes have been sequenced so far, and only one was intensively studied; moreover, a positive correlation between GLV and parasite virulence is yet to be proved. To understand the biological significance of GLV infection in Giardia, the characterization of several GLV strains from naturally infected G. duodenalis isolates is necessary. Here we report high-throughput sequencing of four GLVs strains, from Giardia isolates of human and animal origin. We also report on a new, unclassified viral sequence (designed GdRV-2), unrelated to Giardiavirus, encoding and expressing for a single large protein with an RdRp domain homologous to Totiviridae and Botybirnaviridae. The result of our sequencing and proteomic analyses challenge the current knowledge on GLV and strongly suggest that viral capsid protein translation unusually starts with a proline and that translation of the RNA-dependent RNA polymerase (RdRp) occurs via a +1/-2 ribosomal frameshift mechanism. Nucleotide polymorphism, confirmed by mass-spectrometry analysis, was also observed among and between GLV strains. Phylogenetic analysis indicated the occurrence of at least two GLV subtypes which display different phenotypes and transmissibility in experimental infections of a GLV naïve Giardia isolate.

9.
Biochim Biophys Acta Gen Subj ; 1865(5): 129844, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33444728

RESUMO

BACKGROUND: Inteins are intervening proteins, which are known to perform protein splicing. The reaction results in the production of an intein domain and an inteinless protein, which shows no trace of the insertion. BIL2 is part of the polyubiquitin locus of Tetrahymena thermophila (BUBL), where two bacterial-intein-like (BIL) domains lacking the C + 1 nucleophile, are flanked by two independent ubiquitin-like domains (ubl4/ubl5). METHODS: We solved the X-ray structures of BIL2 in both the inactive and unprecedented, zinc-induced active, forms. Then, we characterized by mass spectrometry the BUBL splicing products in the absence and in the presence of T.thRas-GTPase. Finally, we investigated the effect of ubiquitination on T.thRas-GTPase by molecular dynamics simulations. RESULTS: The structural analysis demonstrated that zinc-induced conformational change activates protein splicing. Moreover, mass spectrometry characterization of the splicing products shed light on the possible function of BIL2, which operates as a "single-ubiquitin-dispensing-platform", allowing the conjugation, via isopeptide bond formation (K(εNH2)-C-ter), of ubl4 to either ubl5 or T.thRas-GTPase. Lastly, we demonstrated that T.thRas-GTPase ubiquitination occurs in proximity of the nucleotide binding pocket and stabilizes the protein active state. CONCLUSIONS: We demonstrated that BIL2 is activated by zinc and that protein splicing induced by this intein does not take place through classical or aminolysis mechanisms but via formation of a covalent isopeptide bond, causing the ubiquitination of endogenous substrates such as T.thRas-GTPase. GENERAL SIGNIFICANCE: In this "enzyme-free" ubiquitination mechanism the isopeptide formation, which canonically requires E1-E2-E3 enzymatic cascade and constitutes the alphabet of ubiquitin biology, is achieved in a single, concerted step without energy consumption.


Assuntos
Processamento de Proteína , Tetrahymena thermophila/metabolismo , Ubiquitinação , Inteínas , Modelos Moleculares , Poliubiquitina/química , Poliubiquitina/metabolismo , Domínios Proteicos , Tetrahymena thermophila/química , Zinco/metabolismo
10.
Front Immunol ; 11: 262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231660

RESUMO

Natural killer (NK) cells contribute to immunosurveillance and first-line defense in the control of tumor growth and metastasis diffusion. NK-cell-derived extracellular vesicles (NKEVs) are constitutively secreted and biologically active. They reflect the protein and genetic repertoire of originating cells, and exert antitumor activity in vitro and in vivo. Cancer can compromise NK cell functions, a status potentially reflected by their extracellular vesicles. Hence, NKEVs could, on the one hand, contribute to improve cancer therapy by interacting with tumor and/or immune cells and on the other hand, sense the actual NK cell status in cancer patients. Here, we investigated the composition of healthy donors' NKEVs, including NK microvesicles and exosomes, and their interaction with uncompromised cells of the immune system. To sense the systemic NK cell status in cancer patients, we developed an immune enzymatic test (NKExoELISA) that measures plasma NK-cell-derived exosomes, captured as tsg101+CD56+ nanovesicles. NKEV mass spectrometry and cytokine analysis showed the expression of NK cell markers, i.e., NKG2D and CD94, perforin, granzymes, CD40L, and other molecules involved in cytotoxicity, homing, cell adhesion, and immune activation, together with EV markers tsg101, CD81, CD63, and CD9 in both NK-derived exosomes and microvesicles. Data are available via Proteome Xchange with identifier PXD014894. Immunomodulation studies revealed that NKEVs displayed main stimulatory functions in peripheral blood mononuclear cells (PBMCs), inducing the expression of human leukocyte antigen DR isotype (HLA-DR) and costimulatory molecules on monocytes and CD25 expression on T cells, which was maintained in the presence of lipopolysaccharide (LPS) and interleukin (IL)-10/transforming growth factor beta (TGFß), respectively. Furthermore, NKEVs increased the CD56+ NK cell fraction, suggesting that effects mediated by NKEVs might be potentially exploited in support of cancer therapy. The measurement of circulating NK exosomes in the plasma of melanoma patients and healthy donors evidenced lower levels of tsg101+CD56+ exosomes in patients with respect to donors. Likewise, we detected lower frequencies of NK cells in PBMCs of these patients. These data highlight the potential of NKExoELISA to sense alterations of the NK cell immune status.


Assuntos
Vesículas Extracelulares/patologia , Imunoensaio/métodos , Células Matadoras Naturais/patologia , Leucócitos Mononucleares/imunologia , Melanoma/imunologia , Antígeno CD56/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Vigilância Imunológica , Imunomodulação , Melanoma/diagnóstico , Monitorização Imunológica , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Mapas de Interação de Proteínas , Proteômica , Fatores de Transcrição/metabolismo
11.
J Exp Med ; 216(12): 2778-2799, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31601675

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is characterized by immune dysregulation due to inadequate restraint of overactivated immune cells and is associated with a variable clinical spectrum having overlap with more common pathophysiologies. HLH is difficult to diagnose and can be part of inflammatory syndromes. Here, we identify a novel hematological/autoinflammatory condition (NOCARH syndrome) in four unrelated patients with superimposable features, including neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and HLH. Patients shared the same de novo CDC42 mutation (Chr1:22417990C>T, p.R186C) and altered hematopoietic compartment, immune dysregulation, and inflammation. CDC42 mutations had been associated with syndromic neurodevelopmental disorders. In vitro and in vivo assays documented unique effects of p.R186C on CDC42 localization and function, correlating with the distinctiveness of the trait. Emapalumab was critical to the survival of one patient, who underwent successful bone marrow transplantation. Early recognition of the disorder and establishment of treatment followed by bone marrow transplant are important to survival.


Assuntos
Suscetibilidade a Doenças , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Fenótipo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Alelos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Criança , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica , Proteína cdc42 de Ligação ao GTP/química
12.
Cells ; 8(7)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284535

RESUMO

Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These results show that spastin is a novel target of HIPK2 and that HIPK2-mediated phosphorylation of spastin contributes to its midbody localization for successful abscission.


Assuntos
Proteínas de Transporte/metabolismo , Citocinese , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espastina/metabolismo , Linhagem Celular Tumoral , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Serina/genética , Serina/metabolismo , Espastina/genética
13.
mSystems ; 4(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058231

RESUMO

Clostridium butyricum, the type species of the genus Clostridium, is considered an obligate anaerobe, yet it has been shown to grow in the presence of oxygen. C. butyricum strains atypically producing the botulinum neurotoxin type E are the leading cause of type E human botulism in Italy. Here, we show that type E botulinum neurotoxin-producing C. butyricum strains growing exponentially were able to keep growing and producing toxin in vitro upon exposure to air, although less efficiently than under ideal oxygen-depleted conditions. Bacterial growth in air was maintained when the initial cell density was higher than 103 cells/ml. No spores were detected in the cultures aerated for 5 h. To understand the biological mechanisms allowing the adaptation of vegetative cells of C. butyricum type E to oxygen, we compared the proteome and metabolome profiles of the clostridial cultures grown for 5 h under either aerated or anaerobic conditions. The results indicated that bacterial cells responded to oxygen stress by slowing growth and modulating the expression of proteins involved in carbohydrate uptake and metabolism, redox homeostasis, DNA damage response, and bacterial motility. Moreover, the ratio of acetate to butyrate was significantly higher under aeration. This study demonstrates for the first time that a botulinum neurotoxin-producing Clostridium can withstand oxygen during vegetative growth. IMPORTANCE Botulinum neurotoxins, the causative agents of the potentially fatal disease of botulism, are produced by certain Clostridium strains during vegetative growth, usually in anaerobic environments. Our findings indicate that, contrary to current understanding, the growth of neurotoxigenic C. butyricum strains and botulinum neurotoxin type E production can continue upon transfer from anaerobic to aerated conditions and that adaptation of strains to oxygenated environments requires global changes in proteomic and metabolic profiles. We hypothesize that aerotolerance might constitute an unappreciated factor conferring physiological advantages on some botulinum toxin-producing clostridial strains, allowing them to adapt to otherwise restrictive environments.

14.
Oncogene ; 37(26): 3562-3574, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29563611

RESUMO

Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Transporte/metabolismo , Citocinese/fisiologia , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Instabilidade Cromossômica/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células HCT116 , Células HeLa , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética
15.
PLoS One ; 13(2): e0192651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447293

RESUMO

Dystroglycan (DG) is a membrane receptor, belonging to the dystrophin-glycoprotein complex (DGC) and formed by two subunits, α-dystroglycan (α-DG) and ß-dystroglycan (ß -DG). The C-terminal domain of α-DG and the N-terminal extracellular domain of ß -DG are connected, providing a link between the extracellular matrix and the cytosol. Under pathological conditions, such as cancer and muscular dystrophies, DG may be the target of metalloproteinases MMP-2 and MMP-9, contributing to disease progression. Previously, we reported that the C-terminal domain α-DG (483-628) domain is particularly susceptible to the catalytic activity of MMP-2; here we show that the α-DG 621-628 region is required to carry out its complete digestion, suggesting that this portion may represent a MMP-2 anchoring site. Following this observation, we synthesized an α-DG based-peptide, spanning the (613-651) C-terminal region. The analysis of the kinetic and thermodynamic parameters of the whole and the isolated catalytic domain of MMP-2 (cdMMP-2) has shown its inhibitory properties, indicating the presence of (at least) two binding sites for the peptide, both located within the catalytic domain, only one of the two being topologically distinct from the catalytic active groove. However, the different behavior between whole MMP-2 and cdMMP-2 envisages the occurrence of an additional binding site for the peptide on the hemopexin-like domain of MMP-2. Interestingly, mass spectrometry analysis has shown that α-DG (613-651) peptide is cleavable even though it is a very poor substrate of MMP-2, a feature that renders this molecule a promising template for developing a selective MMP-2 inhibitor.


Assuntos
Distroglicanas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Humanos , Cinética , Camundongos , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Termodinâmica
16.
Nucleic Acids Res ; 46(1): 267-278, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29165708

RESUMO

Proper chromosome segregation is crucial for preserving genomic integrity, and errors in this process cause chromosome mis-segregation, which may contribute to cancer development. Sister chromatid separation is triggered by Separase, an evolutionary conserved protease that cleaves the cohesin complex, allowing the dissolution of sister chromatid cohesion. Here we provide evidence that Separase participates in genomic stability maintenance by controlling replication fork speed. We found that Separase interacted with the replication licensing factors MCM2-7, and genome-wide data showed that Separase co-localized with MCM complex and cohesin. Unexpectedly, the depletion of Separase increased the fork velocity about 1.5-fold and caused a strong acetylation of cohesin's SMC3 subunit and altered checkpoint response. Notably, Separase silencing triggered genomic instability in both HeLa and human primary fibroblast cells. Our results show a novel mechanism for fork progression mediated by Separase and thus the basis for genomic instability associated with tumorigenesis.


Assuntos
Replicação do DNA , DNA/química , Instabilidade Genômica , Conformação de Ácido Nucleico , Separase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , DNA/genética , DNA/metabolismo , Células HeLa , Humanos , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Genéticos , Ligação Proteica , Interferência de RNA , Separase/genética , Coesinas
17.
Int J Parasitol Drugs Drug Resist ; 7(2): 147-158, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28366863

RESUMO

Giardiasis, a parasitic diarrheal disease caused by Giardia duodenalis, affects one billion people worldwide. Treatment relies only on a restricted armamentarium of drugs. The disease burden and the increase in treatment failure highlight the need for novel, safe and well characterized drug options. The antitumoral compound NBDHEX is effective in vitro against Giardia trophozoites and inhibits glycerol-3-phosphate dehydrogenase. Aim of this work was to search for additional NBDHEX protein targets. The intrinsic NBDHEX fluorescence was exploited in a proteomic analysis to select and detect modified proteins in drug treated Giardia. In silico structural analysis, intracellular localization and functional assays were further performed to evaluate drug effects on the identified targets. A small subset of Giardia proteins was covalently bound to the drug at specific cysteine residues. These proteins include metabolic enzymes, e.g. thioredoxin reductase (gTrxR), as well as elongation factor 1B-γ (gEF1Bγ), and structural proteins, e.g. α-tubulin. We showed that NBDHEX in vitro binds to recombinant gEF1Bγ and gTrxR, but only the last one could nitroreduce NBDHEX leading to drug modification of gTrxR catalytic cysteines, with concomitant disulphide reductase activity inhibition and NADPH oxidase activity upsurge. Our results indicate that NBDHEX reacts with multiple targets whose roles and/or functions are specifically hampered. In addition, NBDHEX is in turn converted to reactive intermediates extending its toxicity. The described NBDHEX pleiotropic action accounts for its antigiardial activity and encourages the use of this drug as a promising alternative for the future treatment of giardiasis.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Giardia lamblia/efeitos dos fármacos , Giardia lamblia/fisiologia , Oxidiazóis/farmacologia , Proteoma/efeitos dos fármacos , Ligação Proteica , Proteômica , Proteínas de Protozoários/análise
18.
EBioMedicine ; 7: 191-204, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27322472

RESUMO

Alpha-synuclein (αSyn) interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR) and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.


Assuntos
Microdomínios da Membrana/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , alfa-Sinucleína/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Microdomínios da Membrana/química , Camundongos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
19.
Arthritis Rheumatol ; 68(11): 2708-2716, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27213890

RESUMO

OBJECTIVE: To investigate the potential role of circulating autoantibodies specific to neuronal cell surface antigens in the pathophysiology of neuropsychiatric disorders. METHODS: Two different kinds of immunoscreening approaches were used to identify autoantigens associated with neuropsychiatric disorders in the serum of patients with schizophrenia. The presence of autoantibodies specific to the identified autoantigens was then tested in patients with various psychiatric disorders and in patients with systemic lupus erythematosus (SLE) and concomitant neuropsychiatric manifestations. Furthermore, the potential pathogenic role of these autoantibodies was assessed both in vitro and in vivo. RESULTS: GAPDH was identified as a novel autoantigen associated with neuropsychiatric disorders. Serum anti-GAPDH IgG was detected in the serum of 51% of patients with schizophrenia and 50% of patients with major depression. Moreover, SLE patients with comorbid psychiatric manifestations presented significantly higher serum levels of anti-GAPDH antibodies than did SLE patients without psychiatric manifestations (P = 0.004 by chi-square test). Of note, a significant positive correlation (R = 0.48, P = 0.0049, by Spearman's rank correlation test) was found between the levels of serum anti-GAPDH antibodies and cognitive dysfunction in patients with SLE. In vitro analysis of the effects of purified human anti-GAPDH autoantibodies on SH-SY5Y cells showed an immediate neurite retraction. Finally, in vivo administration of anti-GAPDH autoantibodies in the right cerebral ventricle of C57BL/6J mice resulted in specific behavioral changes associated with a detrimental cognitive and emotional profile. CONCLUSION: Overall, these data suggest that anti-GAPDH autoantibodies play a role in the pathogenesis of neuropsychiatric disorders, thus representing a potentially promising tool for the screening of individual vulnerability to these disabling conditions.


Assuntos
Autoanticorpos/imunologia , Transtorno Bipolar/imunologia , Disfunção Cognitiva/imunologia , Transtorno Depressivo Maior/imunologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/imunologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Esquizofrenia/imunologia , Adulto , Animais , Autoanticorpos/farmacologia , Autoantígenos , Comportamento Animal/efeitos dos fármacos , Biomarcadores , Linhagem Celular Tumoral , Cognição/efeitos dos fármacos , Emoções/efeitos dos fármacos , Feminino , Humanos , Imunoglobulina G/imunologia , Injeções Intraventriculares , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neuritos/efeitos dos fármacos , Adulto Jovem
20.
Food Chem ; 197 Pt B: 1240-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26675863

RESUMO

Ricotta cheese is a typical Italian product, made with whey from various species, including cow, buffalo, sheep, and goat. Ricotta cheese nominally manufactured from the last three species may be fraudulently produced using the comparatively cheaper cow whey. Exposing such food frauds requires a reliable analytical method. Despite the extensive similarities shared by whey proteins of the four species, a mass spectrometry-based analytical method was developed that exploits three species-specific peptides derived from ß-lactoglobulin and α-lactalbumin. This method can detect as little as 0.5% bovine whey in ricotta cheese from the other three species. Furthermore, a tight correlation was found (R(2)>0.99) between cow whey percentages and mass spectrometry measurements throughout the 1-50% range. Thus, this method can be used for forensic detection of ricotta cheese adulteration and, if properly validated, to provide quantitative evaluations.


Assuntos
Queijo/análise , Contaminação de Alimentos/análise , Espectrometria de Massas/métodos , Soro do Leite/química , Animais , Búfalos , Bovinos , Feminino , Cabras , Lactalbumina/análise , Lactoglobulinas/análise , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...